Polynomial Commitments
Wrap-UP

Lecture 21
And Linear PCP-Based SNARKS

ypolynomial Commitment

@ Prover wants to (succinctly) commit to a polynomial and later let
the verifier (interactively) evaluate it on points of its choice

@ Generally, a multi-variate polynomial with a known number of
variables and known degree

@ e.g., a mulfi-linear polynomial in GKR. In some other
applications, univariate polynomial of a known degree

@ Trivial solution: send the coefficients of the polynomial
@ But not succinct and evaluating the polynomial is expensive

@ Want verifiers computation/communication to be sub-linear in
the size of the polynomial

@ Non-trivial solutions: Using Merkle hashes and low-degree tests;

from hardness of discrete logarithm; from bilinear pairings; using
"IOPs”; ...

Polynomial Commitment

@ 3 Approaches:
® Hash-Based
@ Ligero, FRI and their variants
@ Discrete Log-Based
@ Bulletproofs
@ Pairings-Based
@ KZG, Dory

® Can be combined with public-coin Outsourced computation
protocols, MIP or IOPs (covered later) that use polynomial
commitments, to get SNARKSs

® Other approaches to SNARKS:
@ From PCPs and Merkle hashes
@ From Linear PCPs and Linear function commitment (Today)

-~

@ PCP with a very long (super-polynomial) but more structured proof

SNARKS

from Linear PCPs

@ Proof m is the evaluation of a multi-variate linear polynomial
(total degree is 1) with O as the constant term

a mlax+by] = an[x] + brm[y] for x,y € Fk and a,b € F

@ Idea: can commit to such a mulfi-variate linear polynomial
efficiently [Later]

@ Linear PCPs + non-inferactive multi-variate linear polynomial
commitment schemes yield practical SNARKs

@ e.g., Grothlé”

d

SNARKS

from Linear PCPs
A Scheme for RICS

@ m public vectors aj, bi, ¢i € I'" and a private vector z € I'ns.t. for
all ie[m], <ai,z> <b;,z> = <cj,z>

@ Will require z; = 1. May also require some more z; to be fixed.

® Generalizes constraints like zjz;» = zj~, zj+zj» = zj~

Idea: Encode {ai,bicCi}icim} as polynomials evaluated at m places, so
that a single combined constraint can be checked

For je[n], let degree m-1 polynomials Aj, Bj, C; be such that for all
ic[m], Aj(oi) = aij, Bj(oi) = bij, Cj(oi) = cjj

Let Po(X) = [Zjer) ziAi(X) 1+ [Zjem 2Bi(X) 1 = [Zjerm z,C4(X)]
P.(ci) = <ai,z> <bi,z> - <ci,z>

P, is a degree 2(m-1) polynomial that evaluates to O in § o }icim iff
all the constraints (other than fixed values) satisfied

SNARKS

from Linear PCPs

@ To prove P, 3z such that P, evaluates to 0 in H = { 6i }icim]

@ (Ignoring for now that some coordinates of z have to be fixed)
& Fact: P(X) vanishes on H iff Zy(X) = M, cn (X-0) divides P(X)

@ To prove P,(X) = Zu(X)-Q(X), where and Q(X) is some polynomial
of degree 2(m-1)-m = m-2

@ Enough to check P,(B) = Zu(B).Q(B) for random B < I for large I

@ Linear PCP: Proof includes linear functions L, and Lqg s.t. Lo(X) =
<x,z> and Lq(1,X,..,xm2) = Q(x). Verifier checks Zu(B):La(1,8,..,8™m2) =
Lz(a)Lz(b) - Lz(c) where a;j = Aj(B), bj = Bj(B), cj = Ci(B)

@ SNARK: Need to commit to L, and Lq succinctly

Linear Function Commitment

@ Goal: Prover commits fo a vector D € ", and on being queried with

a vector x € I'n, opens to <D,x>.
(Enough to get s as g° J

@ Simple infteractive solution

® Commitment: Verifier picks 8 < I, uses/|an additively

homomorphic encryption scheme to encrypt each 3, and sends
them. Prover homomorphically computegencryption of <D,3> and
sends it back. Verifier decrypts to get s | <D,3>

@ Evaluation: Verifier picks a<I' and send T(y=aX+3. Prover sends

a = <D,x> and b = <D,y>. Verifier checks b = «a + s.

@ Batch evaluation: For xi, X2, ..., let y = (auXi+azX2+...) + B
@ Soundness: For any X, on challenges vy’ for «,«" (resp.), if two
answers ata’ then b-b'=aa-o'a’ and y-y'=(x-a')x yield «,a’. But if B is
hidden (as it should be), only «-a" is revealed.
@ Not public coin: Verifier keeps secrets: 3, « and decryption key

SNARKS

from Linear PCPs
Linear PCP: Proof includes linear functions L, and Lq s.t. Lx(X) =

<x,z> and Lqg(1,x,..,xm2) = Q(x). Verifier checks Zu(8)-La(1,8,..,6™2) =
Lz(a)Lz(b) - Lz(c) where a; = Aj(8), bj = Bj(B), ¢; = Ci(B)

Interactive commitment involves verifier sends a homomorphic
encryption of r and later random o

SNARK: Need to commit to L, and Lq non-interactively

@ Cannot use non-public coin protocol with Fiat-Shamir

Idea (a la KZG): Compute Zu(B), La(1,B,..,.8m2) and L(x) for x=a,b,c in
the exponent, using trusted setup (gz+(),gz4®), (g,9v,9%,97%,g%",g¢", ...),
(gx1,9v*1,g%2,g74,...) for x=a,b,c. Verifier will use pairings (with G; = G3)

@ Need to also ensure same z used for L.(x), x=a,b,c. Ask for L,(x*)
too, where x*= 81a + 82b + 83¢, 8; < I and cross-check

SNARKS

from Linear PCPs

Linear PCP: Proof includes linear functions L, and Lq s.t. Lo(x) =
<X,z> and Lq(1,x,..,xm-2) = Q(x). Verifier checks Zx(B):La(1,83,..,8m-2) =
L2(a)Lz(b) - Lz(c) where a; = Aj(8), bj = Bj(B), ¢; = Ci(B)

SNARK:

Setup: gZu®), (g,gY,gB,gYB,gBZ,gYBZ,...), {(gx,97%1,9%2,97%2, ...)}x=a,bcx*, Where
x*= 81a + 82b + &3¢, with 8, v, 8i < I

Prover sends (ga,ha) = (g2®,grA®), (gx,hx) = (g@*,grz*) for x=a,b,c,x*

Verifier checks:
e(gZ+(f),ga)-e(g.9c) = e(ga,gp)
e(g.9x*) = e(g’,ga) e(g?2,gn) e(g®s,.gc)
e(gv,gr) = e(g,hr) for T=Q,a,b,c,x*

SNARKS

from Linear PCPs

Setup: gzu(®), (g,gY,gB,gYB,gBZ,gYBZ,...), {(gx, 971,972,977z, ...)}x=a,bcx*, Where
x*= 810 + d2b + &3¢, with 8, v, 8 < F

Prover sends (ga,ha) = (g®),grA®), (gx,hx) = (gz*,gr<z=>) for x=a,b,c,x*

Verifier checks:
e(gZH(B)ng)°e(9/9c) = €(ga,gb)
e(g,9x*) = e(g.,gq) e(g’2gb) e(gs,gc)
e(g,gr) = e(g,hr) for T=Q,a,b,c,x*

Knowledge soundness based on KEA and “Strong” Discrete Log
assumption in the source group

@ “Strong DL assumption”: Given g,g%g¢",.. cant find 8

Grothlé is a more efficient version, but soundness relies on the
Generic Group model (or the Algebraic Group model) heuristics

SNARKS

from Linear PCPs

@ Saw PoK of z such that P, evaluates to O in H = { 6 }ic[m]

@ Also need to check z equals known values at various coordinates

@ In particular need at least one such coordinate (z;=1) to model
constraints from general circuit satisfiability

@ Let z = 2' || 2”, where z’ is known. In the Linear PCP, to commit to
L., prover should commit only to L,» and the verifier computes L,(x)
= <z’ x> + Ly(x") where x = x||x” (for x=a,b,c)

@ In the SNARK, instead of sending (gx,hx) = (g<z*,grz*>), prover
sends (g'x,h'x) = (g7 x> grz"x") (for x=a,b,c,x*). Verifier computes
gx = g'x * g¢x> using g< which is included in the setup.

