
Polynomial Commitments
Wrap-UP

Lecture 21

And Linear PCP-Based SNARKs

Polynomial Commitment
Prover wants to (succinctly) commit to a polynomial and later let
the verifier (interactively) evaluate it on points of its choice

Generally, a multi-variate polynomial with a known number of
variables and known degree

e.g., a multi-linear polynomial in GKR. In some other
applications, univariate polynomial of a known degree

Trivial solution: send the coefficients of the polynomial

But not succinct and evaluating the polynomial is expensive

Want verifier’s computation/communication to be sub-linear in
the size of the polynomial

Non-trivial solutions: Using Merkle hashes and low-degree tests;
from hardness of discrete logarithm; from bilinear pairings; using
“IOPs”; …

Re
ca
ll

Polynomial Commitment
3 Approaches:

Hash-Based

Ligero, FRI and their variants

Discrete Log-Based

Bulletproofs

Pairings-Based

KZG, Dory

Can be combined with public-coin Outsourced computation
protocols, MIP or IOPs (covered later) that use polynomial
commitments, to get SNARKs

Other approaches to SNARKS:

From PCPs and Merkle hashes

From Linear PCPs and Linear function commitment (Today)

SNARKs

PCP with a very long (super-polynomial) but more structured proof

Proof Ã is the evaluation of a multi-variate linear polynomial
(total degree is 1) with 0 as the constant term

Ã[ax+by] = aÃ[x] + bÃ[y] for x,y * Fk and a,b * F

Idea: can commit to such a multi-variate linear polynomial
efficiently [Later]

Linear PCPs + non-interactive multi-variate linear polynomial
commitment schemes yield practical SNARKs

e.g., “Groth16”

from Linear PCPs

Re
ca
ll

SNARKs
A Scheme for R1CS

m public vectors ai, bi, ci * Fn and a private vector z * Fn s.t. for

all i*[m], <ai,z> <bi,z> = <ci,z>

Will require z1 = 1. May also require some more zj to be fixed.

Generalizes constraints like zjzj’’ = zj’’’, zj+zj’’ = zj’’’

Idea: Encode {ai,bi,ci}i*[m] as polynomials evaluated at m places, so
that a single combined constraint can be checked

For j*[n], let degree m-1 polynomials Aj, Bj, Cj be such that for all
i*[m], Aj(!i) = aij, Bj(!i) = bij, Cj(!i) = cij

Let Pz(X) = ["j*[n] zjAj(X)] · ["j*[n] zjBj(X)] - ["j*[n] zjCj(X)]

Pz(!i) = <ai,z> <bi,z> - <ci,z>

Pz is a degree 2(m-1) polynomial that evaluates to 0 in { !i }i*[m] iff

all the constraints (other than fixed values) satisfied

from Linear PCPs

SNARKs

To prove Pz #z such that Pz evaluates to 0 in H = { !i }i*[m]

(Ignoring for now that some coordinates of z have to be fixed)

Fact: P(X) vanishes on H iff ZH(X) = /!∈H (X-!) divides P(X)

To prove Pz(X) = ZH(X)·Q(X), where and Q(X) is some polynomial
of degree 2(m-1)-m = m-2

Enough to check Pz(³) = ZH(³).Q(³) for random ³ ± F for large F

Linear PCP: Proof includes linear functions Lz and LQ s.t. Lz(x) =
<x,z> and LQ(1,x,..,xm-2)) = Q(x). Verifier checks ZH(³)·LQ(1,³,..,³m-2) =
Lz(a)Lz(b) - Lz(c) where aj = Aj(³), bj = Bj(³), cj = Cj(³)

SNARK: Need to commit to Lz and LQ succinctly

from Linear PCPs

Goal: Prover commits to a vector D * Fn, and on being queried with

a vector x * Fn, opens to <D,x>.

Simple interactive solution

Commitment: Verifier picks ³ ± Fn, uses an additively

homomorphic encryption scheme to encrypt each ³i, and sends
them. Prover homomorphically computes encryption of <D,³> and
sends it back. Verifier decrypts to get s = <D,³>

Evaluation: Verifier picks ³±F and send x, y=³x+³. Prover sends

a = <D,x> and b = <D,y>. Verifier checks b = ³a + s.

Batch evaluation: For x1, x2, …, let y = (³1x1+³2x2+…) + ³

Soundness: For any x, on challenges y,y’ for ³,³’ (resp.), if two
answers aba’ then b-b’=³a-³’a’ and y-y’=(³-³’)x yield ³,³’. But if ³ is
hidden (as it should be), only ³-³’ is revealed.

Not public coin: Verifier keeps secrets: ³, ³ and decryption key

Linear Function Commitment

Enough to get s as gs

Linear PCP: Proof includes linear functions Lz and LQ s.t. Lz(x) =
<x,z> and LQ(1,x,..,xm-2)) = Q(x). Verifier checks ZH(³)·LQ(1,³,..,³m-2) =
Lz(a)Lz(b) - Lz(c) where aj = Aj(³), bj = Bj(³), cj = Cj(³)

Interactive commitment involves verifier sends a homomorphic
encryption of r and later random ³

SNARK: Need to commit to Lz and LQ non-interactively

Cannot use non-public coin protocol with Fiat-Shamir

Idea (a la KZG): Compute ZH(³), LQ(1,³,..,³m-2) and Lz(x) for x=a,b,c in

the exponent, using trusted setup (gZH(³),g³ZH(³)), (g,g³,g³,g³³,g³2,g³³2,…),
(gx1,g³x1,gx2,g³x1,…) for x=a,b,c. Verifier will use pairings (with G1 = G2)

Need to also ensure same z used for Lz(x), x=a,b,c. Ask for Lz(x*)
too, where x*= ´1a + ´2b + ´3c, ´i ± F and cross-check

SNARKs
from Linear PCPs

Linear PCP: Proof includes linear functions Lz and LQ s.t. Lz(x) =
<x,z> and LQ(1,x,..,xm-2)) = Q(x). Verifier checks ZH(³)·LQ(1,³,..,³m-2) =
Lz(a)Lz(b) - Lz(c) where aj = Aj(³), bj = Bj(³), cj = Cj(³)

SNARK:

Setup: gZH(³), (g,g³,g³,g³³,g³2,g³³2,…), {(gx1,g³x1,gx2,g³x2,…)}x=a,b,c,x*, where
x*= ´1a + ´2b + ´3c, with ³, ³, ´i ± F

Prover sends (gQ,hQ) = (gQ(³),g³Q(³)), (gx,hx) = (g<z,x>,g³<z,x>) for x=a,b,c,x*

Verifier checks:
 e(gZH(³),gQ)·e(g,gc) = e(ga,gb)
 e(g,gx*) = e(g´1,ga) e(g´2,gb) e(g´3,gc)
 e(g³,gT) = e(g,hT) for T=Q,a,b,c,x*

SNARKs
from Linear PCPs

Setup: gZH(³), (g,g³,g³,g³³,g³2,g³³2,…), {(gx1,g³x1,gx2,g³x2,…)}x=a,b,c,x*, where
x*= ´1a + ´2b + ´3c, with ³, ³, ´i ± F

Prover sends (gQ,hQ) = (gQ(³),g³Q(³)), (gx,hx) = (g<z,x>,g³<z,x>) for x=a,b,c,x*

Verifier checks:
 e(gZH(³),gQ)·e(g,gc) = e(ga,gb)
 e(g,gx*) = e(g´1,ga) e(g´2,gb) e(g´3,gc)
 e(g³,gT) = e(g,hT) for T=Q,a,b,c,x*

Knowledge soundness based on KEA and “Strong” Discrete Log
assumption in the source group

“Strong DL assumption” : Given g,g³,g³2,… can’t find ³

Groth16 is a more efficient version, but soundness relies on the
Generic Group model (or the Algebraic Group model) heuristics

SNARKs
from Linear PCPs

SNARKs

Saw PoK of z such that Pz evaluates to 0 in H = { !i }i*[m]

Also need to check z equals known values at various coordinates

In particular need at least one such coordinate (z1=1) to model
constraints from general circuit satisfiability

Let z = z’ || z’’, where z’ is known. In the Linear PCP, to commit to
Lz, prover should commit only to Lz’’ and the verifier computes Lz(x)
= <z’,x’> + Lz’’(x’’) where x = x’||x’’ (for x=a,b,c)

In the SNARK, instead of sending (gx,hx) = (g<z,x>,g³<z,x>), prover
sends (g’x,h’x) = (g<z’’,x’’>,g³<z’’,x’’>) (for x=a,b,c,x*). Verifier computes
gx = g’x · g<z’,x’> using gx’ which is included in the setup.

from Linear PCPs

