
Polynomial Commitments 
Wrap-UP

Lecture 21

And Linear PCP-Based SNARKs



Polynomial Commitment
Prover wants to (succinctly) commit to a polynomial and later let 
the verifier (interactively) evaluate it on points of its choice


Generally, a multi-variate polynomial with a known number of 
variables and known degree 


e.g., a multi-linear polynomial in GKR. In some other 
applications, univariate polynomial of a known degree


Trivial solution: send the coefficients of the polynomial


But not succinct and evaluating the polynomial is expensive


Want verifier’s computation/communication to be sub-linear in 
the size of the polynomial


Non-trivial solutions: Using Merkle hashes and low-degree tests; 
from hardness of discrete logarithm; from bilinear pairings; using 
“IOPs”; …  
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Polynomial Commitment
3 Approaches:


Hash-Based


Ligero, FRI and their variants


Discrete Log-Based


Bulletproofs


Pairings-Based


KZG, Dory


Can be combined with public-coin Outsourced computation 
protocols, MIP or IOPs (covered later) that use polynomial 
commitments, to get SNARKs


Other approaches to SNARKS:


From PCPs and Merkle hashes


From Linear PCPs and Linear function commitment (Today)



SNARKs

PCP with a very long (super-polynomial) but more structured proof


Proof Ã is the evaluation of a multi-variate linear polynomial 
(total degree is 1) with 0 as the constant term


Ã[ax+by] = aÃ[x] + bÃ[y] for x,y * Fk and a,b * F


Idea: can commit to such a multi-variate linear polynomial 
efficiently [Later]


Linear PCPs + non-interactive multi-variate linear polynomial 
commitment schemes yield practical SNARKs


e.g., “Groth16”

from Linear PCPs
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SNARKs
A Scheme for R1CS


m public vectors ai, bi, ci * Fn and a private vector z * Fn s.t. for 

all i*[m], <ai,z> <bi,z> = <ci,z>


Will require z1 = 1. May also require some more zj to be fixed.


Generalizes constraints like zjzj’’ = zj’’’, zj+zj’’ = zj’’’


Idea: Encode {ai,bi,ci}i*[m] as polynomials evaluated at m places, so 
that a single combined constraint can be checked


For j*[n], let degree m-1 polynomials Aj, Bj, Cj be such that for all 
i*[m], Aj(!i) = aij, Bj(!i) = bij, Cj(!i) = cij


Let Pz(X) =  [ "j*[n] zjAj(X) ] · [ "j*[n] zjBj(X) ] - [ "j*[n] zjCj(X) ]


Pz(!i) = <ai,z> <bi,z> - <ci,z>


Pz is a degree 2(m-1) polynomial that evaluates to 0 in { !i }i*[m] iff 

all the constraints (other than fixed values) satisfied

from Linear PCPs



SNARKs

To prove Pz #z such that Pz evaluates to 0 in H = { !i }i*[m] 


(Ignoring for now that some coordinates of z have to be fixed)


Fact: P(X) vanishes on H iff ZH(X) = /!∈H (X-!) divides P(X)


To prove Pz(X) = ZH(X)·Q(X), where and Q(X) is some polynomial 
of degree 2(m-1)-m = m-2


Enough to check Pz(³) = ZH(³).Q(³) for random ³ ± F for large F


Linear PCP: Proof includes linear functions Lz and LQ s.t. Lz(x) = 
<x,z> and LQ(1,x,..,xm-2)) = Q(x). Verifier checks ZH(³)·LQ(1,³,..,³m-2) = 
Lz(a)Lz(b) - Lz(c) where aj = Aj(³), bj = Bj(³), cj = Cj(³)


SNARK: Need to commit to Lz and LQ succinctly

from Linear PCPs



Goal: Prover commits to a vector D * Fn, and on being queried with 

a vector x * Fn, opens to <D,x>.


Simple interactive solution 

Commitment: Verifier picks ³ ± Fn, uses an additively 

homomorphic encryption scheme to encrypt each ³i, and sends 
them. Prover homomorphically computes encryption of <D,³> and 
sends it back. Verifier decrypts to get s = <D,³>

Evaluation: Verifier picks ³±F and send x, y=³x+³. Prover sends 

a = <D,x> and b = <D,y>. Verifier checks b = ³a + s.

Batch evaluation: For x1, x2, …, let y = (³1x1+³2x2+…) + ³


Soundness: For any x, on challenges y,y’ for ³,³’ (resp.), if two 
answers aba’ then b-b’=³a-³’a’ and y-y’=(³-³’)x yield ³,³’. But if ³ is 
hidden (as it should be), only ³-³’ is revealed.

Not public coin: Verifier keeps secrets: ³, ³ and decryption key

Linear Function Commitment

Enough to get s as gs



Linear PCP: Proof includes linear functions Lz and LQ s.t. Lz(x) = 
<x,z> and LQ(1,x,..,xm-2)) = Q(x). Verifier checks ZH(³)·LQ(1,³,..,³m-2) = 
Lz(a)Lz(b) - Lz(c) where aj = Aj(³), bj = Bj(³), cj = Cj(³)


Interactive commitment involves verifier sends a homomorphic 
encryption of r and later random ³


SNARK: Need to commit to Lz and LQ non-interactively


Cannot use non-public coin protocol with Fiat-Shamir


Idea (a la KZG): Compute ZH(³), LQ(1,³,..,³m-2) and Lz(x) for x=a,b,c in 

the exponent, using trusted setup (gZH(³),g³ZH(³)), (g,g³,g³,g³³,g³2,g³³2,…), 
(gx1,g³x1,gx2,g³x1,…) for x=a,b,c. Verifier will use pairings (with G1 = G2)


Need to also ensure same z used for Lz(x), x=a,b,c. Ask for Lz(x*) 
too, where x*= ´1a + ´2b + ´3c, ´i ± F and cross-check

SNARKs
from Linear PCPs



Linear PCP: Proof includes linear functions Lz and LQ s.t. Lz(x) = 
<x,z> and LQ(1,x,..,xm-2)) = Q(x). Verifier checks ZH(³)·LQ(1,³,..,³m-2) = 
Lz(a)Lz(b) - Lz(c) where aj = Aj(³), bj = Bj(³), cj = Cj(³)


SNARK:


Setup: gZH(³), (g,g³,g³,g³³,g³2,g³³2,…), {(gx1,g³x1,gx2,g³x2,…)}x=a,b,c,x*, where 
x*= ´1a + ´2b + ´3c, with ³, ³, ´i ± F


Prover sends (gQ,hQ) = (gQ(³),g³Q(³)), (gx,hx) = (g<z,x>,g³<z,x>) for x=a,b,c,x*


Verifier checks: 
     e(gZH(³),gQ)·e(g,gc) = e(ga,gb) 
     e(g,gx*) = e(g´1,ga) e(g´2,gb) e(g´3,gc) 
     e(g³,gT) = e(g,hT) for T=Q,a,b,c,x*

SNARKs
from Linear PCPs



Setup: gZH(³), (g,g³,g³,g³³,g³2,g³³2,…), {(gx1,g³x1,gx2,g³x2,…)}x=a,b,c,x*, where 
x*= ´1a + ´2b + ´3c, with ³, ³, ´i ± F


Prover sends (gQ,hQ) = (gQ(³),g³Q(³)), (gx,hx) = (g<z,x>,g³<z,x>) for x=a,b,c,x*


Verifier checks: 
     e(gZH(³),gQ)·e(g,gc) = e(ga,gb) 
     e(g,gx*) = e(g´1,ga) e(g´2,gb) e(g´3,gc) 
     e(g³,gT) = e(g,hT) for T=Q,a,b,c,x*


Knowledge soundness based on KEA and “Strong” Discrete Log 
assumption in the source group


“Strong DL assumption” :  Given  g,g³,g³2,… can’t find ³


Groth16 is a more efficient version, but soundness relies on the 
Generic Group model (or the Algebraic Group model) heuristics

SNARKs
from Linear PCPs



SNARKs

Saw PoK of z such that Pz evaluates to 0 in H = { !i }i*[m] 


Also need to check z equals known values at various coordinates


In particular need at least one such coordinate (z1=1) to model 
constraints from general circuit satisfiability


Let z = z’ || z’’, where z’ is known. In the Linear PCP, to commit to 
Lz, prover should commit only to Lz’’ and the verifier computes Lz(x) 
= <z’,x’> + Lz’’(x’’) where x = x’||x’’ (for x=a,b,c)


In the SNARK, instead of sending (gx,hx) = (g<z,x>,g³<z,x>), prover 
sends (g’x,h’x) = (g<z’’,x’’>,g³<z’’,x’’>) (for x=a,b,c,x*). Verifier computes 
gx = g’x · g<z’,x’> using gx’ which is included in the setup.

from Linear PCPs


