Polynomial Commitments Wrap-UP

Lecture 21 And Linear PCP-Based SNARKs

Polynomial Commitment

Recall

- Prover wants to (succinctly) commit to a polynomial and later let the verifier (interactively) evaluate it on points of its choice
 - Generally, a multi-variate polynomial with a known number of variables and known degree
 - e.g., a multi-linear polynomial in GKR. In some other applications, univariate polynomial of a known degree
- Trivial solution: send the coefficients of the polynomial
 - But not succinct and evaluating the polynomial is expensive
 - Want verifier's computation/communication to be sub-linear in the size of the polynomial
- Non-trivial solutions: Using Merkle hashes and low-degree tests; from hardness of discrete logarithm; from bilinear pairings; using "IOPs"; ...

Polynomial Commitment

3 Approaches:

- Hash-Based
 - Ligero, FRI and their variants
- Discrete Log-Based
 - Bulletproofs
- Pairings-Based
 - KZG, Dory
- Can be combined with public-coin Outsourced computation protocols, MIP or IOPs (covered later) that use polynomial commitments, to get SNARKs
- Other approaches to SNARKS:
 - From PCPs and Merkle hashes
 - From Linear PCPs and Linear function commitment (Today)

PCP with a very long (super-polynomial) but more structured proof

 Proof π is the evaluation of a multi-variate linear polynomial (total degree is 1) with 0 as the constant term

onumber on matrix = aπ[x] + bπ[y] for x, y ∈ 𝔽^k and a, b ∈ 𝔽

 Idea: can commit to such a multi-variate linear polynomial efficiently [Later]

Linear PCPs + non-interactive multi-variate linear polynomial commitment schemes yield practical SNARKs

e.g., "Groth16"

Recall

SNARKs

from Linear PCPs

A Scheme for R1CS

- m public vectors a_i , b_i , $c_i \in \mathbb{F}^n$ and a private vector $z \in \mathbb{F}^n$ s.t. for all i∈[m], < a_i ,z> < b_i ,z> = < c_i ,z>
- Will require z₁ = 1. May also require some more z_j to be fixed.
 Generalizes constraints like z_jz_j" = z_j", z_j+z_j" = z_j"
- Idea: Encode {a_i,b_i,c_i}_{i∈[m]} as polynomials evaluated at m places, so that a single combined constraint can be checked
- For j∈[n], let degree m-1 polynomials A_j, B_j, C_j be such that for all i∈[m], A_j(σ_i) = a_{ij}, B_j(σ_i) = b_{ij}, C_j(σ_i) = c_{ij}
- Let $P_z(X) = [\Sigma_{j \in [n]} z_j A_j(X)] \cdot [\Sigma_{j \in [n]} z_j B_j(X)] [\Sigma_{j \in [n]} z_j C_j(X)]$
- $P_z(\sigma_i) = \langle a_i, z \rangle \langle b_i, z \rangle \langle c_i, z \rangle$
- P_z is a degree 2(m-1) polynomial that evaluates to 0 in { σ_i }_{i \in [m]} iff all the constraints (other than fixed values) satisfied

- To prove $P_z \exists z \text{ such that } P_z \text{ evaluates to 0 in } H = \{ \sigma_i \}_{i \in [m]}$
 - Ignoring for now that some coordinates of z have to be fixed)
 - Fact: P(X) vanishes on H iff $Z_H(X) = \prod_{\sigma \in H} (X \sigma)$ divides P(X)
 - To prove $P_z(X) = Z_H(X) \cdot Q(X)$, where and Q(X) is some polynomial of degree 2(m-1)-m = m-2
 - Enough to check $P_z(\beta) = Z_H(\beta).Q(\beta)$ for random $\beta \leftarrow F$ for large F

• Linear PCP: Proof includes linear functions L_z and L_Q s.t. $L_z(x) = \langle x, z \rangle$ and $L_Q(1, x, ..., x^{m-2}) = Q(x)$. Verifier checks $Z_H(\beta) \cdot L_Q(1, \beta, ..., \beta^{m-2}) = L_z(a)L_z(b) - L_z(c)$ where $a_j = A_j(\beta)$, $b_j = B_j(\beta)$, $c_j = C_j(\beta)$

• SNARK: Need to commit to L_z and L_Q succinctly

Linear Function Commitment

- Goal: Prover commits to a vector D ∈ \mathbb{F}^n , and on being queried with a vector x ∈ \mathbb{F}^n , opens to <D,x>.
 Enough to get s as g^s
- Simple interactive solution

Commitment: Verifier picks β ← Fⁿ, uses an additively homomorphic encryption scheme to encrypt each β_i, and sends them. Prover homomorphically computes encryption of <D,β> and sends it back. Verifier decrypts to get s = <D,β>
 Evaluation: Verifier picks α←F and send x, y=αx+β. Prover sends

 $a = \langle D, x \rangle$ and $b = \langle D, y \rangle$. Verifier checks $b' = \alpha a + s$.

Batch evaluation: For x₁, x₂, ..., let y = (α₁x₁+α₂x₂+...) + β
Soundness: For any x, on challenges y,y' for α,α' (resp.), if two answers a≠a' then b-b'=αa-α'a' and y-y'=(α-α')x yield α,α'. But if β is hidden (as it should be), only α-α' is revealed.
Not public coin: Verifier keeps secrets: β, α and decryption key

SNARKs

from Linear PCPs

• Linear PCP: Proof includes linear functions L_z and L_Q s.t. $L_z(x) = \langle x, z \rangle$ and $L_Q(1, x, ..., x^{m-2}) = Q(x)$. Verifier checks $Z_H(\beta) \cdot L_Q(1, \beta, ..., \beta^{m-2}) = L_z(a)L_z(b) - L_z(c)$ where $a_j = A_j(\beta)$, $b_j = B_j(\beta)$, $c_j = C_j(\beta)$

- Interactive commitment involves verifier sends a homomorphic encryption of r and later random α
- SNARK: Need to commit to L_z and L_Q non-interactively

Cannot use non-public coin protocol with Fiat-Shamir

- Idea (a la KZG): Compute Z_H(β), L_Q(1,β,..,β^{m-2}) and L_z(x) for x=a,b,c in the exponent, using trusted setup (g^{Z_H(β)},g^{γZ_H(β)}), (g,g^γ,g^β,g^{γβ},g^{β²},g^{γβ²},...), (g^{x1},g^{γx1},g^{x2},g^{γx1},...) for x=a,b,c. Verifier will use pairings (with G₁ = G₂)
 - Need to also ensure same z used for $L_z(x)$, x=a,b,c. Ask for $L_z(x^*)$ too, where $x^* = \delta_1 a + \delta_2 b + \delta_3 c$, $\delta_i \leftarrow \mathbb{F}$ and cross-check

Linear PCP: Proof includes linear functions L_z and L_Q s.t. L_z(x) = <x,z> and L_Q(1,x,..,x^{m-2}) = Q(x). Verifier checks Z_H(β)·L_Q(1,β,..,β^{m-2}) = L_z(a)L_z(b) - L_z(c) where a_j = A_j(β), b_j = B_j(β), c_j = C_j(β)
SNARK:

Setup: $g^{Z_{H}(\beta)}$, $(g,g^{\gamma},g^{\beta},g^{\gamma\beta},g^{\beta^{2}},g^{\gamma\beta^{2}},...)$, $\{(g^{x_{1}},g^{\gamma x_{1}},g^{x_{2}},g^{\gamma x_{2}},...)\}_{x=a,b,c,x}$, where $x^{*} = \delta_{1}a + \delta_{2}b + \delta_{3}c$, with β , γ , $\delta_{i} \leftarrow \mathbb{F}$

Prover sends (g_Q,h_Q) = (g^{Q(β)},g^{γQ(β)}), (g_x,h_x) = (g^{<z,x>},g^{γ<z,x>}) for x=a,b,c,x*

Verifier checks:

 e(g^{Z_H(β)},g_Q)·e(g,g_c) = e(g_a,g_b)
 e(g,g_x*) = e(g^δ₁,g_a) e(g^δ₂,g_b) e(g^δ₃,g_c)
 e(g^γ,g_T) = e(g,h_T) for T=Q,a,b,c,x*

SNARKs

from Linear PCPs

Setup: $g^{Z_{H}(\beta)}$, $(g,g^{\gamma},g^{\beta},g^{\gamma\beta},g^{\beta^{2}},g^{\gamma\beta^{2}},...)$, $\{(g^{x_{1}},g^{\gamma x_{1}},g^{x_{2}},g^{\gamma x_{2}},...)\}_{x=a,b,c,x}$, where $x^{*} = \delta_{1}a + \delta_{2}b + \delta_{3}c$, with β , γ , $\delta_{i} \leftarrow \mathbb{F}$

Prover sends (g_Q,h_Q) = (g^{Q(β)},g^{γQ(β)}), (g_x,h_x) = (g^{<z,x>},g^{γ<z,x>}) for x=a,b,c,x*

Verifier checks: $e(g^{Z_{H}(\beta)}, g_{Q}) \cdot e(g, g_{c}) = e(g_{a}, g_{b})$ $e(g, g_{X}^{*}) = e(g^{\delta_{1}}, g_{a}) e(g^{\delta_{2}}, g_{b}) e(g^{\delta_{3}}, g_{c})$ $e(g^{\gamma}, g_{T}) = e(g, h_{T}) \text{ for } T = Q, a, b, c, X^{*}$

Knowledge soundness based on KEA and "Strong" Discrete Log assumption in the source group

Strong DL assumption": Given $g_{\beta}g^{\beta^2}$,... can't find β

Groth16 is a more efficient version, but soundness relies on the Generic Group model (or the Algebraic Group model) heuristics

- Saw PoK of z such that P_z evaluates to 0 in H = { σ_i }_{i \in [m]}
- Also need to check z equals known values at various coordinates
 In particular need at least one such coordinate (z₁=1) to model constraints from general circuit satisfiability
- Let z = z' || z'', where z' is known. In the Linear PCP, to commit to L_z , prover should commit only to $L_{z''}$ and the verifier computes $L_z(x) = \langle z', x' \rangle + L_{z''}(x'')$ where x = x' || x'' (for x=a,b,c)
 - In the SNARK, instead of sending (g_x,h_x) = (g^{<z,x>},g^{×(z,x>}), prover sends (g'_x,h'_x) = (g^{<z",x">},g^{×(z",x">}) (for x=a,b,c,x*). Verifier computes g_x = g'_x g^{<z',x'>} using g^{×'} which is included in the setup.