Polynomial Commitments
Wrap-UP

Lecture 21
And Linear PCP-Based SNARKs
Polynomial Commitment

- Prover wants to (succinctly) commit to a polynomial and later let the verifier (interactively) evaluate it on points of its choice.

- Generally, a multi-variate polynomial with a known number of variables and known degree.
 - e.g., a multi-linear polynomial in GKR. In some other applications, univariate polynomial of a known degree.

- Trivial solution: send the coefficients of the polynomial.
 - But not succinct and evaluating the polynomial is expensive.
 - Want verifier’s computation/communication to be sub-linear in the size of the polynomial.

- Non-trivial solutions: Using Merkle hashes and low-degree tests; from hardness of discrete logarithm; from bilinear pairings; using “IOPs”; ...
Polynomial Commitment

3 Approaches:
- Hash-Based
 - Ligero, FRI and their variants
- Discrete Log-Based
 - Bulletproofs
- Pairings-Based
 - KZG, Dory

Can be combined with public-coin Outsourced computation protocols, MIP or IOPs (covered later) that use polynomial commitments, to get SNARKs

Other approaches to SNARKS:
- From PCPs and Merkle hashes
- From Linear PCPs and Linear function commitment (Today)
SNARKs
from Linear PCPs

- PCP with a very long (super-polynomial) but more structured proof

 - Proof π is the evaluation of a multi-variate linear polynomial (total degree is 1) with 0 as the constant term

 - $\pi(ax+by) = a\pi(x) + b\pi(y)$ for $x,y \in F^k$ and $a,b \in F$

- Idea: can commit to such a multi-variate linear polynomial efficiently [Later]

- Linear PCPs + non-interactive multi-variate linear polynomial commitment schemes yield practical SNARKs

- e.g., “Groth16”
SNARKs
from Linear PCPs

A Scheme for R1CS

m public vectors $a_i, b_i, c_i \in \mathbb{F}^n$ and a private vector $z \in \mathbb{F}^n$ s.t. for all $i \in [m]$, $<a_i,z> <b_i,z> = <c_i,z>

Will require $z_1 = 1$. May also require some more z_j to be fixed.

Generalizes constraints like $z_j z_j'' = z_j'''$, $z_j + z_j'' = z_j'''

Idea: Encode $\{a_i,b_i,c_i\}_{i \in [m]}$ as polynomials evaluated at m places, so that a single combined constraint can be checked.

For $j \in [n]$, let degree $m-1$ polynomials A_j, B_j, C_j be such that for all $i \in [m]$, $A_j(\sigma_i) = a_{ij}$, $B_j(\sigma_i) = b_{ij}$, $C_j(\sigma_i) = c_{ij}$

Let $P_z(X) = [\sum_{j \in [n]} z_j A_j(X)] \cdot [\sum_{j \in [n]} z_j B_j(X)] - [\sum_{j \in [n]} z_j C_j(X)]$

$P_z(\sigma_i) = <a_i,z> <b_i,z> - <c_i,z>

P_z is a degree $2(m-1)$ polynomial that evaluates to 0 in $\{ \sigma_i \}_{i \in [m]}$ iff all the constraints (other than fixed values) satisfied
SNARKs
from Linear PCPs

- To prove \(P_z \exists z \text{ such that } P_z \text{ evaluates to } 0 \text{ in } H = \{ \sigma_i \}_{i \in [m]} \)

- (Ignoring for now that some coordinates of \(z \) have to be fixed)

- Fact: \(P(X) \) vanishes on \(H \) iff \(Z_H(X) = \prod_{\sigma \in H} (X - \sigma) \) divides \(P(X) \)

- To prove \(P_z(X) = Z_H(X) \cdot Q(X) \), where and \(Q(X) \) is some polynomial of degree \(2(m-1)-m = m-2 \)

- Enough to check \(P_z(\beta) = Z_H(\beta) \cdot Q(\beta) \) for random \(\beta \leftarrow F \) for large \(F \)

- Linear PCP: Proof includes linear functions \(L_z \) and \(L_Q \) s.t. \(L_z(x) = \langle x, z \rangle \) and \(L_Q(1, x, \ldots, x^{m-2}) = Q(x) \). Verifier checks \(Z_H(\beta) \cdot L_Q(1, \beta, \ldots, \beta^{m-2}) = L_z(a)L_z(b) - L_z(c) \) where \(a_j = A_j(\beta), b_j = B_j(\beta), c_j = C_j(\beta) \)

- SNARK: Need to commit to \(L_z \) and \(L_Q \) succinctly
Linear Function Commitment

Goal: Prover commits to a vector $D \in \mathbb{F}^n$, and on being queried with a vector $x \in \mathbb{F}^n$, opens to $\langle D, x \rangle$.

Simple interactive solution

Commitment: Verifier picks $\beta \leftarrow \mathbb{F}^n$, uses an additively homomorphic encryption scheme to encrypt each β_i, and sends them. Prover homomorphically computes encryption of $\langle D, \beta \rangle$ and sends it back. Verifier decrypts to get $s = \langle D, \beta \rangle$.

Evaluation: Verifier picks $\alpha \leftarrow \mathbb{F}$ and send x, $y = \alpha x + \beta$. Prover sends $a = \langle D, x \rangle$ and $b = \langle D, y \rangle$. Verifier checks $b = \alpha a + s$.

Batch evaluation: For x_1, x_2, \ldots, let $y = (\alpha_1 x_1 + \alpha_2 x_2 + \ldots) + \beta$.

Soundness: For any x, on challenges y, y' for α, α' (resp.), if two answers $a \neq a'$ then $b - b' = \alpha a - \alpha'a'$ and $y - y' = (\alpha - \alpha')x$ yield α, α'. But if β is hidden (as it should be), only $\alpha - \alpha'$ is revealed.

Not public coin: Verifier keeps secrets: β, α and decryption key.
SNARKs

from Linear PCPs

Linear PCP: Proof includes linear functions L_z and L_Q s.t. $L_z(x) = \langle x, z \rangle$ and $L_Q(1, x, \ldots, x^{m-2}) = Q(x)$. Verifier checks $Z_H(\beta) \cdot L_Q(1, \beta, \ldots, \beta^{m-2}) = L_z(a)L_z(b) - L_z(c)$ where $a_j = A_j(\beta)$, $b_j = B_j(\beta)$, $c_j = C_j(\beta)$.

Interactive commitment involves verifier sends a homomorphic encryption of r and later random α.

SNARK: Need to commit to L_z and L_Q non-interactively.

Cannot use non-public coin protocol with Fiat-Shamir.

Idea (a la KZG): Compute $Z_H(\beta)$, $L_Q(1, \beta, \ldots, \beta^{m-2})$ and $L_z(x)$ for $x=a,b,c$ in the exponent, using trusted setup $(g^{Z_H(\beta)}, g^{\gamma Z_H(\beta)})$, $(g, g^\gamma, g^\beta, g^{\gamma \beta}, g^\beta^2, g^{\gamma \beta^2}, \ldots)$, $(g^{x_1}, g^{\gamma x_1}, g^{x_2}, g^{\gamma x_1}, \ldots)$ for $x=a,b,c$. Verifier will use pairings (with $G_1 = G_2$).

Need to also ensure same z used for $L_z(x)$, $x=a,b,c$. Ask for $L_z(x^*)$ too, where $x^* = \delta_1 a + \delta_2 b + \delta_3 c$, $\delta_i \leftarrow \mathbb{F}$ and cross-check.
SNARKs
from Linear PCPs

Linear PCP: Proof includes linear functions L_z and L_Q s.t. $L_z(x) = \langle x, z \rangle$ and $L_Q(1, x, \ldots, x^{m-2}) = Q(x)$. Verifier checks $Z_H(\beta) \cdot L_Q(1, \beta, \ldots, \beta^{m-2}) = L_z(a) L_z(b) - L_z(c)$ where $a_j = A_j(\beta)$, $b_j = B_j(\beta)$, $c_j = C_j(\beta)$

SNARK:

Setup: $g^{Z_H(\beta)}$, $(g, g^\gamma, g^\beta, g^{\gamma \beta}, g^{\beta^2}, g^{\gamma \beta^2}, \ldots)$, $(g^{x_1}, g^{\gamma x_1}, g^{x_2}, g^{\gamma x_2}, \ldots)_{x=a,b,c,x^*}$, where $x^* = \delta_1 a + \delta_2 b + \delta_3 c$, with β, γ, $\delta_i \leftarrow \mathbb{F}$

Prover sends $(g_Q, h_Q) = (g^{Q(\beta)}, g^{\gamma Q(\beta)})$, $(g_x, h_x) = (g^{\langle z, x \rangle}, g^{\gamma \langle z, x \rangle})$ for $x=a,b,c,x^*$

Verifier checks:

$e(g^{Z_H(\beta)}, g_Q) \cdot e(g, g_c) = e(g_a, g_b)$
$e(g, g_{x^*}) = e(g^{\delta_1}, g_a) \cdot e(g^{\delta_2}, g_b) \cdot e(g^{\delta_3}, g_c)$
$e(g^{\gamma}, g_T) = e(g, h_T)$ for $T=Q,a,b,c,x^*$
SNARKs

from Linear PCPs

Setup: \(g^{Z_H(\beta)}, (g, g^\gamma, g^{\beta}, g^{\gamma \beta}, g^{\beta^2}, g^{\gamma \beta^2}, \ldots),\) \(\{(g^{x_1}, g^{\gamma x_1}, g^{x_2}, g^{\gamma x_2}, \ldots)\}_{x=a,b,c,x^*}, \) where \(x^* = \delta_1 a + \delta_2 b + \delta_3 c, \) with \(\beta, \gamma, \delta_i \leftarrow F \)

Prover sends \((g_Q, h_Q) = (g^{Q(\beta)}, g^{\gamma Q(\beta)}), (g_x, h_x) = (g^{<z,x>}, g^{\gamma <z,x>})\) for \(x=a,b,c,x^* \)

Verifier checks:
\[
\begin{align*}
 e(g^{Z_H(\beta)}, g_Q) \cdot e(g, g_c) &= e(g_a, g_b) \\
 e(g, g_{x^*}) &= e(g^{\delta_1}, g_a) \cdot e(g^{\delta_2}, g_b) \cdot e(g^{\delta_3}, g_c) \\
 e(g^{\gamma}, g_T) &= e(g, h_T) \text{ for } T=Q,a,b,c,x^*
\end{align*}
\]

Knowledge soundness based on KEA and “Strong” Discrete Log assumption in the source group

“Strong DL assumption”: Given \(g, g^\beta, g^{\beta^2}, \ldots \) can’t find \(\beta \)

Groth16 is a more efficient version, but soundness relies on the Generic Group model (or the Algebraic Group model) heuristics
SNARKs
from Linear PCPs

- Saw PoK of z such that P_z evaluates to 0 in $H = \{ \sigma_i \}_{i \in [m]}$

- Also need to check z equals known values at various coordinates
 - In particular need at least one such coordinate ($z_1=1$) to model constraints from general circuit satisfiability

- Let $z = z' \| z''$, where z' is known. In the Linear PCP, to commit to L_z, prover should commit only to $L_{z''}$ and the verifier computes $L_z(x) = <z',x'> + L_{z''}(x'')$ where $x = x'\|x''$ (for $x=a,b,c$)

- In the SNARK, instead of sending $(g_x,h_x) = (g^{<z,x>},g^{<\gamma z,x>})$, prover sends $(g'_x,h'_x) = (g^{<z'',x''>},g^{<\gamma z'',x''>})$ (for $x=a,b,c,x^*$). Verifier computes $g_x = g'_x \cdot g^{<z',x'>}$ using $g^{x'}$ which is included in the setup.