IOP for R1CS

Lecture 22

SNARKs from IOPs

- Interactive version of PCP: Allow committing to multiple strings over multiple rounds
 - Can be made into a proof system using Merkle hashes
- Polynomial IOP: the strings are polynomial evaluations
 - Can be implemented using any polynomial commitment scheme
 - In particular, there are polynomial commitment schemes which are derived from "standard" IOPs (in turn implemented using Merkle hashes)
- Public coin

Recall

So that it can be made non-interactive

IOP for R1CS

- Written as Az \circ Bz = Cz, where , A_{ij} = (a_i)_j, B_{ij} = (b_i)_j, C_{ij} = (c_i)_j
- Can express conditions like F(z)=0 where F is an arithmetic circuit using sparse matrices (A,B,C) (each row having only a constant number of non-zero entries)
- Plan: An (information-theoretic) IOP for RICS
 - Uses a univariate sum-check protocol
 - The prover's complexity can be kept proportional to the number of non-zero entries in A, B, C
- Can be converted into a SNARK using any univariate polynomial commitment scheme

Univariate Sum-Check

- Fact: Let H be a multiplicative subgroup of a field F. For any univariate polynomial U over F, Σ_{σ∈H} U(σ) = 0 iff ∃ polynomials Q, R s.t degree(Q) ≤ degree(U) |H|, and degree(R) ≤ |H|-2 and U(X) = Z_H(X) Q(X) + X R(X)

To prove $\Sigma_{\sigma \in H} U(\sigma) = 0$ using a polynomial IOP, prover provides oracles (of the right degrees) for Q, R (in addition to the oracle for U) and the verifier checks $U(\beta) = Z_H(\beta) Q(\beta) + \beta R(\beta)$ for $\beta \leftarrow F$

Fact: If H is a multiplicative subgroup, Z_H(X) = X^m-1, where m=|H|
Because a^m-1=0 ∀m∈H (m being the order of the group) and so Z_H(X) divides X^m-1. Comparing coefficients of X^m, they are equal.
Z_H(β) = β^m-1 can be computed in O(log m) time. U, Q, R will be queried at β.

- or Recall R1CS: m constraints on z∈ \mathbb{F}^n of the form <a_i,z> <b_i,z> = <c_i,z>
- Written as $Az \circ Bz = Cz$, where , $A_{ij} = (a_i)_j$, $B_{ij} = (b_i)_j$, $C_{ij} = (c_i)_j$
- ${\ensuremath{ \circ }}$ Identify row and column indices with elements in H and H', two multiplicative subgroups of $\mathbb F$
- Polynomial IOP: Degree m-1 polynomial oracles to be given: $P_z(X) \text{ s.t. } \forall \sigma \in H, P_z(\sigma) = z_{\sigma}, \text{ and for } M \in \{A,B,C\}, P_M(X) \text{ s.t. } \forall \sigma \in H,$ $P_M(\sigma) = (Mz)_{\sigma}$
- Need to check $\forall \sigma \in H$, $P_M(\sigma) = (MZ)_{\sigma}$ for $M \in \{A, B, C\}$ and also $P_A(\sigma)P_B(\sigma) = P_C(\sigma)$, without going through elements of H individually

- Solution Need to check ∀σ ∈ H, P_M(σ) = (Mz)_σ for M∈{A,B,C} and also $P_A(\sigma)P_B(\sigma) = P_C(\sigma), \text{ without going through elements of H individually}$
- Note: Degree of P_A(X)P_B(X) P_c(X) is 2(m–1), but it is required to be 0 only in m points. So, it need not be that P_A(X)P_B(X) = P_c(X)
- ∀ $\sigma \in H$ $P_A(\sigma)P_B(\sigma) = P_C(\sigma) \Leftrightarrow \exists Q P_A(X)P_B(X) P_C(X) = Z_H(X) \cdot Q(X)$ (where Q is of degree m-1)

• Prover should provide an oracle for the polynomial Q as well. Verifier checks $P_A(\beta)P_B(\beta) - P_C(\beta) = Z_H(\beta)\cdot Q(\beta)$ for $\beta \leftarrow \mathbb{F}$, by querying the oracles P_A , P_B , P_C , Q and evaluating $Z_H(\beta) = \beta^n - 1$ itself (in O(log n) time).

Solution Need to check $\forall \sigma \in H$, $P_M(\sigma) = (Mz)_\sigma$ for M∈{A,B,C} and also $P_A(\sigma)P_B(\sigma) = P_c(\sigma)$, without going through elements of H individually • Encode each $M \in \{A,B,C\}$ as a polynomial $T_M(X,Y)$ of degree m-1 in X and n-1 in Y s.t. $\forall \sigma \in H, \sigma' \in H' \quad T_M(\sigma, \sigma') = M_{\sigma, \sigma'} \quad \text{for } M \in \{A, B, C\}$ • Let $t^{(i)}(Y) = \Sigma_j t_{ij} Y^j$ be the degree n-1 polynomial such that $t^{(i)}(j) = M_{ij}$. Let $s^{(j)}(X)$ be the degree m-1 polynomial s.t. $s^{(j)}(i)$ = t_{ij} . Then let $T_M(X,Y) = \Sigma_j s^{(j)}(X) Y^j$ • Need to check $\forall \sigma \in H$, $P_M(\sigma) = \Sigma_{\sigma'} T_M(\sigma, \sigma') z_{\sigma'}$. Since $P_M(X)$ and $T_M(X,\sigma')$ both have degree m-1 while |H|=m, this is equivalent to checking $P_M(X) = \Sigma_{\sigma'} T_M(X, \sigma') z_{\sigma'}$.

• Enough to check $P_M(\beta) = \Sigma_{\sigma'} T_M(\beta, \sigma') z_{\sigma'}$ for $\beta \leftarrow \mathbb{F}$

Given 1+..+1 (n times) ≠ 0 in F, let U(Y) = T_M(β,Y) P_Z(Y) – P_M(β)·n⁻¹. Then to check Σ_{σ'∈H'} U(Y) = 0. Univariate sum check.
U needs to be evaluated at a random β'. Need T_M(β,β').

Need to check ∀σ ∈ H, P_M(σ) = (Mz)_σ for M∈{A,B,C} and also P_A(σ)P_B(σ) = P_C(σ), without going through elements of H individually
 Encode each M ∈ {A,B,C} as a polynomial T_M(X,Y) of degree m-1 in X and n-1 in Y s.t. ∀σ∈H,σ'∈H' T_M(σ,σ') = M_{σ,σ'} for M∈{A,B,C}

- Need to evaluate $T_M(\beta,\beta')$ at $\beta,\beta' \leftarrow \mathbb{F}$
- Though M has mn entries, often it is sparse.
- Goal: a polynomial commitment scheme for T_M in which the prover's complexity is proportional to the number of non-zero entries in M, say k

Will work with m×m square matrices and let H=H'

- Idea: Write $T_M(\beta,\beta')$ as a univariate sum
- Encode the k non-zero entries in M using degree k-1 polynomials V_{row}, V_{col}, and V_{val} and indexed using entries in a multiplicative subgroup K of size k, so that a non-zero M_{ij} (i,j∈H) is indexed using κ ∈ K, i=V_{row}(κ), j=V_{row}(κ), M_{ij} = c_κ V_{val}(κ)

- Let W(X,Y) = Σ_{i=0 to m-1} XⁱY^{m-1-i}. Note W(X,Y)(X-Y) = X^m-Y^m. Then W(x,y) = 0 for distinct x,y∈H. W(x,x) = mx^{m-1} ≠ 0.
 A non-zero M_{ij} (i,j∈H) is indexed using κ ∈ K, i=V_{row}(κ), j=V_{col}(κ), M_{ij} = c_κ V_{val}(κ), where c_κ = W(i,i).W(j,j) where κ indexes M_{ij}
- Claim: $T_M(X,Y) = \Sigma_{\kappa \in \kappa} W(X,V_{row}(\kappa)) W(Y,V_{col}(\kappa)) V_{val}(\kappa)$

They agree on H×H and have degree m-1 on X,Y

- Let $D(Z) = W(\beta, V_{row}(Z)) W(\beta', V_{col}(Z)) V_{val}(Z))$
- D satisfies $T_M(\beta,\beta') = \Sigma_{\kappa \in K} D(\kappa)$
- Use univariate sum-check to evaluate $\Sigma_{\kappa \in \kappa} D(\kappa)$

For that, need to evaluate D at a random point. Use oracles for Vrow, Vcol, Vval and compute W(x,y) = (x^m - y^m)(x-y)⁻¹