
IOP for R1CS
Lecture 22

SNARKs

Interactive version of PCP: Allow committing to multiple strings
over multiple rounds

Can be made into a proof system using Merkle hashes

Polynomial IOP: the strings are polynomial evaluations

Can be implemented using any polynomial commitment scheme

In particular, there are polynomial commitment schemes which
are derived from “standard” IOPs (in turn implemented using
Merkle hashes)

Public coin

So that it can be made non-interactive

from IOPs

Re
ca
ll

IOP for R1CS

R1CS: m constraints on z*Fn of the form <ai,z> <bi,z> = <ci,z>

Written as Az ÿ Bz = Cz, where , Aij = (ai)j, Bij = (bi)j, Cij = (ci)j

Can express conditions like F(z)=0 where F is an arithmetic circuit
using sparse matrices (A,B,C) (each row having only a constant
number of non-zero entries)

Plan: An (information-theoretic) IOP for R1CS

Uses a univariate sum-check protocol

The prover’s complexity can be kept proportional to the number
of non-zero entries in A, B, C

Can be converted into a SNARK using any univariate polynomial
commitment scheme

Univariate Sum-Check
Recall ZH(X) = /!∈H (X-!)

Fact: Let H be a multiplicative subgroup of a field F. For any

univariate polynomial U over F, #!∈H U(!) = 0 iff # polynomials Q, R

s.t degree(Q) f degree(U) - |H|, and degree(R) f |H|-2 and
U(X) = ZH(X) Q(X) + X R(X)

To prove #!∈H U(!) = 0 using a polynomial IOP, prover provides

oracles (of the right degrees) for Q, R (in addition to the oracle
for U) and the verifier checks U(³) = ZH(³) Q(³) + ³ R(³) for ³ ± F

Fact: If H is a multiplicative subgroup, ZH(X) = Xm-1, where m=|H|

Because am-1=0 "m*H (m being the order of the group) and so
ZH(X) divides Xm-1. Comparing coefficients of Xm, they are equal.

ZH(³) = ³m-1 can be computed in O(log m) time. U, Q, R will be
queried at ³.

Polynomial IOP for R1CS

Recall R1CS: m constraints on z*Fn of the form <ai,z> <bi,z> = <ci,z>

Written as Az ÿ Bz = Cz, where , Aij = (ai)j, Bij = (bi)j, Cij = (ci)j

Identify row and column indices with elements in H and H’, two
multiplicative subgroups of F

Polynomial IOP: Degree m-1 polynomial oracles to be given:
Pz(X) s.t. "! * H, Pz(!) = z!, and for M * {A,B,C}, PM(X) s.t. "! * H,

PM(!) = (Mz)!

Need to check "! * H, PM(!) = (Mz)! for M*{A,B,C} and also

PA(!)PB(!) = PC(!), without going through elements of H individually

Polynomial IOP for R1CS

Need to check "! * H, PM(!) = (Mz)! for M*{A,B,C} and also

PA(!)PB(!) = PC(!), without going through elements of H individually

Note: Degree of PA(X)PB(X) - PC(X) is 2(m-1), but it is required to
be 0 only in m points. So, it need not be that PA(X)PB(X) = PC(X)

"!*H PA(!)PB(!) = PC(!) ⇔ #Q PA(X)PB(X) - PC(X) = ZH(X)·Q(X)

(where Q is of degree m-1)

Prover should provide an oracle for the polynomial Q as well.
Verifier checks PA(³)PB(³) - PC(³) = ZH(³)·Q(³) for ³ ± F, by

querying the oracles PA, PB, PC, Q and evaluating ZH(³) = ³n - 1
itself (in O(log n) time).

Polynomial IOP for R1CS
Need to check "! * H, PM(!) = (Mz)! for M*{A,B,C} and also
PA(!)PB(!) = PC(!), without going through elements of H individually

Encode each M * {A,B,C} as a polynomial TM(X,Y) of degree m-1
in X and n-1 in Y s.t. "!*H,!’*H’ TM(!,!’) = M!,!’ for M*{A,B,C}

Let t(i)(Y) =#j tij Yj be the degree n-1 polynomial such that
t(i)(j) = Mij. Let s(j)(X) be the degree m-1 polynomial s.t. s(j)(i)
= tij. Then let TM(X,Y) = #j s(j)(X) Yj

Need to check "! * H, PM(!) = #!’ TM(!,!’) z!’. Since PM(X) and
TM(X,!’) both have degree m-1 while |H|=m, this is equivalent to
checking PM(X) = #!’ TM(X,!’) z!’.

Enough to check PM(³) = #!’ TM(³,!’) z!’ for ³±F

Given 1+..+1 (n times) b 0 in F, let U(Y) = TM(³,Y) PZ(Y) -
PM(³)·n-1. Then to check #!’*H’ U(Y) = 0. Univariate sum check.

U needs to be evaluated at a random ³’. Need TM(³,³’).

Polynomial IOP for R1CS
Need to check "! * H, PM(!) = (Mz)! for M*{A,B,C} and also
PA(!)PB(!) = PC(!), without going through elements of H individually

Encode each M * {A,B,C} as a polynomial TM(X,Y) of degree m-1
in X and n-1 in Y s.t. "!*H,!’*H’ TM(!,!’) = M!,!’ for M*{A,B,C}

Need to evaluate TM(³,³’) at ³,³’ ± F

Though M has mn entries, often it is sparse.

Goal: a polynomial commitment scheme for TM in which the
prover’s complexity is proportional to the number of non-zero
entries in M, say k

Will work with m×m square matrices and let H=H’

Idea: Write TM(³,³’) as a univariate sum

Encode the k non-zero entries in M using degree k-1
polynomials Vrow, Vcol , and Vval and indexed using entries in a
multiplicative subgroup K of size k, so that a non-zero Mij (i,j*H)
is indexed using » * K, i=Vrow(»), j=Vrow(»), Mij = c» Vval(»)

Polynomial IOP for R1CS
Let W(X,Y) = #i=0 to m-1 XiYm-1-i . Note W(X,Y)(X-Y) = Xm-Ym.

Then W(x,y) = 0 for distinct x,y*H. W(x,x) = mxm-1 b 0.

A non-zero Mij (i,j*H) is indexed using » * K, i=Vrow(»), j=Vcol(»),

Mij = c» Vval(»), where c» = W(i,i).W(j,j) where » indexes Mij

Claim: TM(X,Y) = #» * K W(X,Vrow(»)) W(Y,Vcol(»)) Vval(»)

They agree on H×H and have degree m-1 on X,Y

Let D(Z) = W(³,Vrow(Z)) W(³’,Vcol(Z)) Vval(Z))

D satisfies TM(³,³’) = #» * K D(»)

Use univariate sum-check to evaluate #» * K D(»)

For that, need to evaluate D at a random point. Use oracles for
Vrow, Vcol, Vval and compute W(x,y) = (xm - ym)(x-y)-1

