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@ Interactive version of PCP: Allow committing fo multiple strings
over multiple rounds

SNARKS

from IOPs

@ Can be made into a proof system using Merkle hashes
@ Polynomial IOP: the strings are polynomial evaluations
@ Can be implemented using any polynomial commitment scheme

@ In particular, there are polynomial commitment schemes which
are derived from “standard” IOPs (in turn implemented using
Merkle hashes)

@ Public coin

@ So that it can be made non-interactive



IOP for RICS

R1CS: m constraints on zel'" of the form «<ai,z> <bi,z> = <c;,z>

@ Written as Az o Bz = Cz, where , Aj; = (ai);, Bij = (b)), Cij = (ci);

Can express conditions like F(z)=0 where F is an arithmetic circuit
using sparse matrices (A,B,C) (each row having only a constant
number of non-zero entries)

Plan: An (information-theoretic) IOP for RICS
@ Uses a univariate sum-check protocol

@ The provers complexity can be kept proportional to the number
of non-zero entries in A, B, C

Can be converted info a SNARK using any univariate polynomial
commitment scheme



Univariate Sum-Check

Recall Zu(X) = M,cn (X-0)
Fact: Let H be a multiplicative subgroup of a field I. For any
univariate polynomial U over I, X,y U(cs) = O iff 3 polynomials Q, R

s.t degree(Q) < degree(U) - IHl, and degree(R) < |H|-2 and
U(X) = ZH(X) Q(X) + X R(X)

To prove X,c4 U(o) = O using a polynomial IOP, prover provides

oracles (of the right degrees) for Q, R (in addition to the oracle
for U) and the verifier checks U(B) = Zn(B) Q(B) + B R(B) for B — F

Fact: If H is a multiplicative subgroup, Zy(X) = Xm-1, where m=|H|
@ Because am-1=0 vmeH (m being the order of the group) and so
Z(X) divides Xm-1. Comparing coefficients of Xm, they are equal.

Zu(B) = Bm-1 can be computed in O(log m) time. U, Q, R will be
queried at 8.




Polynomial IOP for RICS

a Recall RI1CS: m constraints on zelf" of the form <a;,z> <bi,z> = <c;,z>

® Written as Az o Bz = Cz, where , Aj = (a));, Bij = (bi);, Cij = (ci);

Identify row and column indices with elements in H and H', two
multiplicative subgroups of I

Polynomial IOP: Degree m-1 polynomial oracles to be given:
P.(X) s.t. Vo € H, P.(c) = z,, and for M € {A,B,C}, Pu(X) s.t. Vo € H,

Pm(io) = (Mz),
Need to check Vo € H, Pu(c) = (Mz), for Me{A,B,C} and also
Pa(o)Ps(c) = Pc(o), without going through elements of H individually



Polynomial IOP for RICS

Need to check vo € H, Pu(o) = (Mz), for Me{A,B,C} and also
Pa(o)Ps(c) = Pclo), without going through elements of H individually

Note: Degree of Pa(X)Ps(X) - Pc(X) is 2(m-1), but it is required to
be O only in m points. So, it need not be that Pa(X)Ps(X) = Pc(X)

voeH Pa(c)Ps(c) = Pclo) & 3Q Pa(X)Ps(X) - Pc(X) = Zu(X)-Q(X)

(where Q is of degree m-1)

Prover should provide an oracle for the polynomial Q as well.
Verifier checks Pa(B)Ps(B) - Pc(B) = Zu(B)-Q(B) for B <— F, by

querying the oracles Pa, Ps, Pc, Q and evaluating Zy(B) = " - 1
itself (in O(log n) time).




Polynomial IOP for RICS

& Need to check vo € H, Pu(o) = (Mz), for Me{A,B,C} and also
Pa(c)Ps(o) = Pc(o), without going through elements of H individually
@ Encode each M € {A,B,C} as a polynomial Tm(X,Y) of degree m-1

in X and n-1inY s.t. VvoeH,o'eH Tm(o,0') = M, for Me{A,B,C}
@ Let ti)(Y) =X; t;; YJ be the degree n-1 polynomial such that
t0(j) = Mj;. Let sl)(X) be the degree m-1 polynomial s.t. st)(i)
= 1. Then let Tu(X,Y) = X s)(X) Yi
® Need to check vo € H, Pu(o) = 2, Tm(o,6') z,.. Since Pw(X) and
Tm(X,6") both have degree m-1 while |H|=m, this is equivalent to
checking Pm(X) = X, Tm(X,6") z,-.
@ Enough to check Pm(B) = X, Tm(B.0') z,- for BT

& Given 1+..+1 (n times) £ O in F, let U(Y) = Tm(B,Y) Pz(Y) -
Pm(B)-n-l. Then to check X,.cv U(Y) = 0. Univariate sum check.
@ U needs to be evaluated at a random B’. Need Tm(B,8').




Polynomial IOP for RICS

& Need to check vo € H, Pu(o) = (Mz), for Me{A,B,C} and also
Pa(c)Ps(c) = Pc(s), without going through elements of H individually

d

O

9

e 9

Encode each M € {A,B,C} as a polynomial Tm(X,Y) of degree m-1
in X and n-1inY s.t. VvoeH,o'eH Tm(o,0') = M, for Me{A,B,C}
Need to evaluate Tm(B,8°) at 3,8° < F

Though M has mn entries, often it is sparse.

Goal: a polynomial commitment scheme for Tw in which the
provers complexity is proportional to the number of non-zero
entries in M, say Kk

Will work with mxm square matrices and let H=H’

Idea: Write Tm(B,8°) as a univariate sum

Encode the k non-zero entries in M using degree k-1
polynomials Vyow, Veol , and Vva and indexed using entries in a
multiplicative subgroup K of size k, so that a non-zero M (i,jeH)

IS |ndexed US|ng R K, i=Vrow(KJ), J.=Vrow(|</), M'J = C Vval(K/)



Polynomial IOP for RICS

o Let W(X,Y) = Zic0 to m1 XiYm-1-i . Note W(X,Y)(X-Y) = Xm-ym,
Then W(x,y) = O for distinct x,yeH. W(x,x) = mxm-1 £ O.

@ A non-zero M; (i,jeH) is indexed using & € K, i=Vrow(k), j=Veol(k),
Mi; = ¢ Vval(x), where ¢, = W(i,i).W(j,j) where « indexes M;

d Claim: TM(X,Y) = Z& e K W(X,Vrow(K,)) W(Y,Vcol(lﬂ)) Vval(lﬂ)
@ They agree on HxH and have degree m-1 on X.,Y

@ Let D(Z) = W(ﬁ,vrow(z)) W(ﬁ',\/col(Z)) Vval(z))

@ D satisfies Tm(B,8) = 2. < k D(k)
® Use univariate sum-check to evaluate X, c k D(k)

@ For that, need to evaluate D at a random point. Use oracles for
Vriow, Veol, Vval and C0mPU1'€ W(XIY) = (xm = Ym)(x"Y)_l




