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SNARKs

Interactive version of PCP: Allow committing to multiple strings 
over multiple rounds


Can be made into a proof system using Merkle hashes


Polynomial IOP: the strings are polynomial evaluations


Can be implemented using any polynomial commitment scheme


In particular, there are polynomial commitment schemes which 
are derived from “standard” IOPs (in turn implemented using 
Merkle hashes)


Public coin


So that it can be made non-interactive

from IOPs
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IOP for R1CS

R1CS: m constraints on z*Fn of the form <ai,z> <bi,z> = <ci,z>


Written as Az ÿ Bz = Cz, where , Aij = (ai)j, Bij = (bi)j, Cij = (ci)j 


Can express conditions like F(z)=0 where F is an arithmetic circuit 
using sparse matrices (A,B,C) (each row having only a constant 
number of non-zero entries)


Plan: An (information-theoretic) IOP for R1CS 


Uses a univariate sum-check protocol


The prover’s complexity can be kept proportional to the number 
of non-zero entries in A, B, C


Can be converted into a SNARK using any univariate polynomial 
commitment scheme



Univariate Sum-Check
Recall ZH(X) = /!∈H (X-!)


Fact: Let H be a multiplicative subgroup of a field F. For any 

univariate polynomial U over F, #!∈H U(!) = 0 iff # polynomials Q, R 

s.t degree(Q) f degree(U) - |H|, and degree(R) f |H|-2 and 
U(X) = ZH(X) Q(X) + X R(X)


To prove #!∈H U(!) = 0 using a polynomial IOP, prover provides 

oracles (of the right degrees) for Q, R (in addition to the oracle 
for U) and the verifier checks U(³) = ZH(³) Q(³) + ³ R(³) for ³ ± F


Fact: If H is a multiplicative subgroup, ZH(X) = Xm-1, where m=|H|


Because am-1=0 "m*H (m being the order of the group) and so 
ZH(X) divides Xm-1. Comparing coefficients of Xm, they are equal.


ZH(³) = ³m-1 can be computed in O(log m) time. U, Q, R will be 
queried at ³.



Polynomial IOP for R1CS

Recall R1CS: m constraints on z*Fn of the form <ai,z> <bi,z> = <ci,z>


Written as Az ÿ Bz = Cz, where , Aij = (ai)j, Bij = (bi)j, Cij = (ci)j 


Identify row and column indices with elements in H and H’, two 
multiplicative subgroups of F


Polynomial IOP: Degree m-1 polynomial oracles to be given:  
Pz(X) s.t. "! * H, Pz(!) = z!, and for M * {A,B,C}, PM(X) s.t. "! * H,  

PM(!) = (Mz)!


Need to check "! * H, PM(!) = (Mz)! for M*{A,B,C} and also 

PA(!)PB(!) = PC(!), without going through elements of H individually



Polynomial IOP for R1CS

Need to check "! * H, PM(!) = (Mz)! for M*{A,B,C} and also 

PA(!)PB(!) = PC(!), without going through elements of H individually


Note: Degree of PA(X)PB(X) - PC(X) is 2(m-1), but it is required to 
be 0 only in m points. So, it need not be that PA(X)PB(X) = PC(X)


"!*H  PA(!)PB(!) = PC(!) ⇔ #Q PA(X)PB(X) - PC(X) = ZH(X)·Q(X) 

(where Q is of degree m-1)


Prover should provide an oracle for the polynomial Q as well. 
Verifier checks PA(³)PB(³) - PC(³) = ZH(³)·Q(³) for ³ ± F, by 

querying the oracles PA, PB, PC, Q and evaluating ZH(³) = ³n - 1 
itself (in O(log n) time).



Polynomial IOP for R1CS
Need to check "! * H, PM(!) = (Mz)! for M*{A,B,C} and also 
PA(!)PB(!) = PC(!), without going through elements of H individually


Encode each M * {A,B,C} as a polynomial TM(X,Y) of degree m-1 
in X and n-1 in Y s.t. "!*H,!’*H’  TM(!,!’) = M!,!’  for M*{A,B,C}


Let t(i)(Y) =#j tij Yj be the degree n-1 polynomial such that 
t(i)(j) = Mij. Let s(j)(X) be the degree m-1 polynomial s.t. s(j)(i) 
= tij. Then let TM(X,Y) = #j s(j)(X) Yj 


Need to check "! * H, PM(!) = #!’ TM(!,!’) z!’. Since PM(X) and 
TM(X,!’) both have degree m-1 while |H|=m, this is equivalent to 
checking PM(X) = #!’ TM(X,!’) z!’.

Enough to check PM(³) = #!’ TM(³,!’) z!’ for ³±F


Given 1+..+1 (n times) b 0 in F, let U(Y) =  TM(³,Y) PZ(Y) - 
PM(³)·n-1. Then to check #!’*H’ U(Y) = 0. Univariate sum check.

U needs to be evaluated at a random ³’. Need TM(³,³’).



Polynomial IOP for R1CS
Need to check "! * H, PM(!) = (Mz)! for M*{A,B,C} and also 
PA(!)PB(!) = PC(!), without going through elements of H individually


Encode each M * {A,B,C} as a polynomial TM(X,Y) of degree m-1 
in X and n-1 in Y s.t. "!*H,!’*H’  TM(!,!’) = M!,!’  for M*{A,B,C}

Need to evaluate TM(³,³’) at ³,³’ ± F

Though M has mn entries, often it is sparse. 

Goal: a polynomial commitment scheme for TM in which the 
prover’s complexity is proportional to the number of non-zero 
entries in M, say k

Will work with m×m square matrices and let H=H’

Idea: Write TM(³,³’) as a univariate sum 

Encode the k non-zero entries in M using degree k-1 
polynomials  Vrow, Vcol , and Vval and indexed using entries in a 
multiplicative subgroup K of size k, so that a non-zero Mij (i,j*H) 
is indexed using » * K, i=Vrow(»), j=Vrow(»), Mij = c» Vval(») 



Polynomial IOP for R1CS
Let W(X,Y) = #i=0 to m-1 XiYm-1-i . Note W(X,Y)(X-Y) = Xm-Ym. 

Then W(x,y) = 0 for distinct x,y*H. W(x,x) = mxm-1 b 0.


A non-zero Mij (i,j*H) is indexed using » * K, i=Vrow(»), j=Vcol(»),  

Mij = c» Vval(»), where c» = W(i,i).W(j,j) where » indexes Mij


Claim: TM(X,Y) = #» * K W(X,Vrow(»)) W(Y,Vcol(»)) Vval(»)


They agree on H×H and have degree m-1 on X,Y


Let D(Z) = W(³,Vrow(Z)) W(³’,Vcol(Z)) Vval(Z))


D satisfies TM(³,³’) =  #» * K D(»)


Use univariate sum-check to evaluate #» * K D(»)


For that, need to evaluate D at a random point. Use oracles for 
Vrow, Vcol, Vval and compute W(x,y) = (xm - ym)(x-y)-1


