Composition and Iteration for SNARKs

Lecture 23

Composition

Outsourcing the verification back to the prover
Proof for statement σ: Proof π₁ that there exists a proof π₀ for σ which will be accepted by a verifier V₀
Can make the proof shorter and the verification faster
Prover's work increases, but not by much if π₀ short & V₀ fast
Can make the overall proof ZK if the outer proof π₁ is ZK

Composition

Overheads/limiting factors

- Once the witness is short enough, succinctness not possible
- No more a secure scheme in ROM even if π_0, π_1 were: Hash function used in π_0 is implemented as a hash function
- Knowledge soundness degrades: For a time t adversary, Ext₁ runs in time poly₁(t) to extract π₀. Ext₀ extracts witness from Ext₁ in time poly₀(poly₁(t)).
- Suppose σ is for circuits over a field $F_{(0)}$ and the computation of V_0 is over a field $F_{(1)}$, then π_1 should support statements over $F_{(1)}$. May limit choice of the underlying proof systems.

Composition

• Proof for statement σ : Proof π_1 that there exists a proof π_0 for σ which will be accepted by a verifier V₀

- Suppose σ over a field $F_{(0)}$ and verifying π_0 uses computations over a field $F_{(1)}$, then π_1 should support statements over $F_{(1)}$
- Recall: when using discrete-log based polynomial commitment schemes, the field for the polynomial is F_p, where p is the order of the cyclic group where discrete log is assumed to be hard
 The most efficient candidates for such groups are elliptic curve groups. Such a group consists of a set of p points of the form (x,y) ∈ F² for some other "base field" F, and the group

operations use field operations over \mathbb{F} . Here $F_{(0)}$ is \mathbb{F}_{p} , $F_{(1)}$ is \mathbb{F} .

Verification of π₁ will be over another field F₍₂₎. For deeper composition a proof system for statements in F₍₂₎ needed.
 E.g., From 2 groups of order p, q, with base fields F_q, F_p, resp.

Iterative Statements

Many computations encountered in applications are iterative in nature

e.g., evaluating a Merkle-Damgard iterated hash functionGoals:

To reduce prover's total effort

Linear in the number of steps

To allow different provers to carry out different steps

Iterative Statements

When propagating proof

- Omit x_i (except x₁) as verifier cannot take all x_i directly as input. Can instead include a Merkle hash of all x_i in x₁, and w_i can include the opening to x_i
- Omit u_i by instead including a hiding commitment of u_i in y_i, and opening it in w_{i+1}
- Omit v_i and include it in y_i as all of public output needs to go into the next stage's verifier

Iterative Statements

Naïve scheme: At each step, give a proof that the computation in the last step is consistent with the previous step's output

- Allows incremental proving/verification: can forget witnesses/ proofs from previous steps
- Prover's time is linear in n (if each step of computation is taken to be of constant time)
- But overall proof is long, and verification takes time proportional to n

Iterative Statements With Composition

Idea: Move verification into the iterated computation

Statement proven by P_{i+1} includes that V_i accepted its proof

- Note: Cannot prove soundness of the overall scheme in the Random Oracle Model, since the hash function modelled as the RO is now part of the computation
- Note: Provable knowledge soundness degrades exponentially with number of steps. May be directly assumed as a heuristic.
- Prover's time and space requirements are still linear in the number of steps. But each step now has a larger computation.

Folding

A technique for realising iteration more efficiently for the prover
 Will use R1CS representation of F

• $F(y_{j-1}) = y_j$ iff $\exists z = (y_{j-1}, y_j, w)$ s.t. $Az \circ Bz = Cz$

Idea: Combine two R1CS instances (with same A,B,C) into a single R1CS instance, so that the latter can be satisfied only if the original instances can both be (with high probability)

Uses a more general representation: "Extended" RICS

So Az ○ Bz = u Cz + E, where u∈F and E∈F^m is a vector

Given instances Az₁ o Bz₁ = u₁Cz₁ + E₁ and Az₂ o Bz₂ = u₂Cz₂ + E₂, define instance Az o Bz = uCz + E, where u = u₁+ru₂ and E is such that z=z₁+rz₂ satisfies

• E = $E_1 + r^2 E_2 + rT$, where T has the "cross terms":

 $T = Az_{1} Bz_{2} + Az_{2} Bz_{1} - u_{1}Cz_{2} - u_{2}Cz_{1}$

For any row, <ai,z1+rz2> <bi,z1+rz2> = (u1+ru2)<ci,z1+rz2> + E1i + r²E2i + rTi holds for at most two values of r, unless all 3 coefficients of r are 0: requiring the three conditions above to hold for that row

Folding for Iteration

- Expanded R1CS representation of F:
 F(y_{j-1}) = y_j iff ∃z=(y_{j-1},y_j,w_j) s.t. AzoBz=uCz + E, where u=1, E=0
- At each round, the prover commits (via homomorphic commitment) to w_j and y_j to complete the commitment of z_j =(y_{j-1},y_j,w_j). Also to T_j.
- "Folder" picks r_j and computes commitment of $z^{(j)} = z^{(j-1)} + r_j z_j$. Also of $E^{(j)} = E^{(j-1)} + r_j^2 E + r_j T_j = E^{(j-1)} + r_j T_j$ (since E=0). Let $u^{(j)} = u^{(j-1)} + r_j$.
- Finally prover gives a SNARK for ER1CS with E⁽ⁿ⁾, z⁽ⁿ⁾ (committed), u⁽ⁿ⁾, y_{n+1}
 Adapting R1CS SNARKs that use homomorphic commitments to ER1CS

Folding for Iteration

Nova: Convert to a SNARK, by moving folders into the computation represented by the ERICS

Only one verification at the end

- Verifier may be interested in $(y_1, ..., y_{n+1})$, not just y_{n+1}
- Fix: The output of the computation will be $y'_j = (y_j, y^{(j)})$ where $y^{(j)} = Hash(y_j, y^{(j-1)})$. In addition to the above proof, prover can send y_1, \dots, y_{n+1} , so that $y^{(n+1)}$ can be checked.

Note: As before, provable knowledge soundness degrades exponentially with number of steps. May be directly assumed as a heuristic.