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Composition

Outsourcing the verification back to the prover


Proof for statement !: Proof Ã1 that there exists a proof Ã0 for 

! which will be accepted by a verifier V0


Can make the proof shorter and the verification faster


Prover’s work increases, but not by much if Ã0 short & V0 fast


Can make the overall proof ZK if the outer proof Ã1 is ZK



Composition

Overheads/limiting factors


Once the witness is short enough, succinctness not possible


No more a secure scheme in ROM even if Ã0,Ã1 were: Hash 
function used in Ã0 is implemented as a hash function 


Knowledge soundness degrades: For a time t adversary, Ext1 
runs in time poly1(t) to extract Ã0. Ext0 extracts witness from 
Ext1 in time poly0(poly1(t)).


Suppose ! is for circuits over a field F(0) and the computation of 

V0 is over a field F(1), then Ã1 should support statements over 
F(1). May limit choice of the underlying proof systems. 



Composition
Proof for statement !: Proof Ã1 that there exists a proof Ã0 for ! 

which will be accepted by a verifier V0


Suppose ! over a field F(0) and verifying Ã0 uses computations over 

a field F(1), then Ã1 should support statements over F(1)


Recall: when using discrete-log based polynomial commitment 
schemes, the field for the polynomial is Fp, where p is the order of 

the cyclic group where discrete log is assumed to be hard


The most efficient candidates for such groups are elliptic curve 
groups. Such a group consists of a set of p points of the form 
(x,y) * F2 for some other “base field” F, and the group 

operations use field operations over  F. Here F(0) is Fp, F(1) is F.


Verification of Ã1 will be over another field F(2). For deeper 
composition a proof system for statements in F(2) needed.


E.g., From 2 groups of order p, q, with base fields Fq, Fp, resp. 



Iterative Statements

Many computations encountered in applications are iterative in 
nature


e.g., evaluating a Merkle-Damgard iterated hash function


Goals: 


To reduce prover’s total effort


Linear in the number of steps


To allow different provers to carry out different steps
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Iterative Statements

When propagating proof


Omit xi (except x1) as verifier cannot take all xi directly as 
input. Can instead include a Merkle hash of all xi in x1, and wi 

can include the opening to xi


Omit ui by instead including a hiding commitment of ui in yi, and 
opening it in wi+1


Omit vi and include it in yi as all of public output needs to go 
into the next stage’s verifier
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Iterative Statements

Naïve scheme: At each step, give a proof that the computation in 
the last step is consistent with the previous step’s output


Allows incremental proving/verification: can forget witnesses/
proofs from previous steps


Prover’s time is linear in n (if each step of computation is taken 
to be of constant time)


But overall proof is long, and verification takes time 
proportional to n
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Iterative Statements

Idea: Move verification into the iterated computation


Statement proven by Pi+1 includes that Vi accepted its proof


Note: Cannot prove soundness of the overall scheme in the Random 
Oracle Model, since the hash function modelled as the RO is now part of 
the computation


Note: Provable knowledge soundness degrades exponentially with number 
of steps. May be directly assumed as a heuristic.

Prover’s time and space requirements are still linear in the number of 
steps. But each step now has a larger computation.

With Composition
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Folding
A technique for realising iteration more efficiently for the prover


Will use R1CS representation of F

F(yj-1) = yj iff #z=(yj-1,yj,w) s.t. AzÿBz=Cz


Idea: Combine two R1CS instances (with same A,B,C) into a single 
R1CS instance, so that the latter can be satisfied only if the 
original instances can both be (with high probability)

Uses a more general representation: “Extended” R1CS


Az ÿ Bz = u Cz + E, where u*F and E*Fm is a vector


Given instances Az1 ÿ Bz1 = u1Cz1 + E1 and Az2 ÿ Bz2 = u2Cz2 + E2, 
define instance Az ÿ Bz = uCz + E, where u = u1+ru2 and E is such 
that z=z1+rz2 satisfies 


E = E1 + r2E2 + rT, where T has the “cross terms”:  
T = Az1ÿBz2 + Az2ÿBz1 - u1Cz2 - u2Cz1


For any row, <ai,z1+rz2> <bi,z1+rz2> = (u1+ru2)<ci,z1+rz2> + E1i + r2E2i + 
rTi holds for at most two values of r, unless all 3 coefficients of r 
are 0: requiring the three conditions above to hold for that row



Folding for Iteration

Expanded R1CS representation of F:  
F(yj-1) = yj iff #z=(yj-1,yj,wj) s.t. AzÿBz=uCz + E, where u=1, E=0


At each round, the prover commits (via homomorphic commitment) to wj 
and yj to complete the commitment of zj =(yj-1,yj,wj). Also to Tj.


“Folder” picks rj and computes commitment of z(j) = z(j-1) + rjzj . Also of 
E(j) = E(j-1) + rj

2E + rjTj = E(j-1) + rjTj (since E=0). Let u(j) = u(j-1) + rj.


Finally prover gives a SNARK for ER1CS with E(n), z(n) (committed), u(n),yn+1 


Adapting R1CS SNARKs that use homomorphic commitments to ER1CS
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Folding for Iteration

Nova: Convert to a SNARK, by moving folders into the computation 
represented by the ER1CS

Only one verification at the end


Verifier may be interested in (y1,…,yn+1), not just yn+1


Fix: The output of the computation will be y’j = (yj,y(j)) where y(j)  = 
Hash(yj, y(j-1)). In addition to the above proof, prover can send 
y1,…,yn+1, so that y(n+1) can be checked.


Note: As before, provable knowledge soundness degrades exponentially 
with number of steps. May be directly assumed as a heuristic.
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