Composition and Iteration for
SNARKS

Lecture 23

Composition

@ Outsourcing the verification back to the prover

@ Proof for statement o: Proof m that there exists a proof mo for
o which will be accepted by a verifier Vg
@ Can make the proof shorter and the verification faster
@ Provers work increases, but not by much if mo short & Vo fast

@ Can make the overall proof ZK if the outer proof m is ZK

Composition

@ Overheads/limiting factors
® Once the witness is short enough, succinctness not possible

® No more a secure scheme in ROM even if mo,m were: Hash
function used in 1o is implemented as a hash function

@ Knowledge soundness degrades: For a time t adversary, Ext
runs in time polyi(t) to extract mo. Exto extracts witness from
Ext; in time polyo(polyi(t)).

@ Suppose o is for circuits over a field Fio) and the computation of

Vo is over a field Fq, then m should support statements over
Fa). May limit choice of the underlying proof systems.

Composition

Proof for statement o: Proof m that there exists a proof mo for o
which will be accepted by a verifier Vo

Suppose ¢ over a field F(o) and verifying mo uses computations over
a field Fu, then m should support statements over Fg

Recall: when using discrete-log based polynomial commitment
schemes, the field for the polynomial is I, where p is the order of

the cyclic group where discrete log is assumed to be hard

® The most efficient candidates for such groups are elliptic curve
groups. Such a group consists of a set of p points of the form
(x,y) € F2 for some other “base field” F, and the group

operations use field operations over I. Here F() is Ip, F) is I

Verification of m; will be over another field F(z). For deeper
composition a proof system for statements in F(2) needed.

o E.g., From 2 groups of order p, q, with base fields I, I}, resp.

Iterative Statements
VIH : T ;] >

3 =) g mreh e

u; uz Yn Un+1
X1 |—;:1 XJ l; Xn I:n

@ Many computations encountered in applications are iterative in
nature

@ e.g., evaluating a Merkle-Damgard iterated hash function
@ Goals:
@ To reduce provers total effort
@ Linear in the number of steps
@ To allow different provers fo carry out different steps

Iterative Statements

N N
VlT \) Vn+l
CLIRPYL TN & Y2 Yn+l
u; uz Yn Un+1
X1 |T;VZI X2 IE Xn ’ITn

@ When propagating proof

@ Omit x; (except xi1) as verifier cannot take all x; directly as
input. Can instead include a Merkle hash of all x; in x;, and w;
can include the opening to X

@ Omit u; by instead including a hiding commitment of u; in yi, and
opening it in Wiy

@ Omit v; and include it in y; as all of public output needs to go
into the next stages verifier

Iterative Statements

Y

Y1
.H —_—
X
|—:1 l:z
P >
m 1\

2 e

m2

>

—_

Yn

Yn+1

i

——

ogad

D

=i

Tn+1 'T‘

@ Nalve scheme: At each step, give a proof that the computation in

the last step is consistent with the previous steps output

@ Allows incremental proving/verification: can forget witnesses/

proofs from previous steps

@ Provers time is linear in n (if each step of computation is taken

to be of constant time)
@ But overall proof is long, and verification takes time

proportional to n

Iterative Statements
With Composition

N
T Vi TY2 T Yn Yn+l

— —> _

X Vi Vi

A A
E ” I

p P> P e
m M2 n Mn+l
; ?

Idea: Move verification into the iterated computation
@ Statement proven by Pi, includes that V; accepted its proof

Note: Cannot prove soundness of the overall scheme in the Random
Oracle Model, since the hash function modelled as the RO is now part of
the computation

Note: Provable knowledge soundness degrades exponenftially with number
of steps. May be directly assumed as a heuristic.

Provers time and space requirements are still linear in the number of
steps. But each step now has a larger computation.

Folding

@ A technique for realising iteration more efficiently for the prover
@ Will use RICS representation of F
@ F(yj-1) = vj iff 3z=(y-1,y;,wW) s.t. AzoBz=Cz
@ Idea: Combine two RICS instances (with same A,B,C) into a single

RICS instance, so that the latter can be satisfied only if the
original instances can both be (with high probability)

@ Uses a more general representation: "Extended” RI1CS
@ Az 0 Bz = u Cz + E, where uel’ and Eel'mis a vector

@ Given instances Az; o Bz; = uiCz; + E;and Az, o Bzz = uCz; + Eo,
define instance Az o Bz = uCz + E, where u = ui+ru; and E is such
that z=z;+rz; satisfies
® E = E; + r2E; + rT, where T has the "cross terms”:

= AZ10322 + AZZOBZ1 - U1C22 - U2C21

@ For any row, <a;,zi+rzz> <bj,z1+rz2> = (W+ruz)<ci,zi+rz2> + Eji + r2Ey +
rTi holds for at most two values of r, unless all 3 coefficients of r
are O: requiring the three conditions above to hold for that row

Folding for Iteration

! Vi Yi-1 Yi Yn Yn+l
|—;1 com(zi-1) lz com(z(}) ljn com(z™) ‘l
T ! DY, u;
Com(E)I Uj-1 b Foldjcom(E 3)' Uj Com(E(”)), Un p |$ v,
| com(z J-)T m
com(T))

Expanded RICS representation of F:
F(yj-1) = y; iff 3z=(yj.1,yj,w;) s.t. AzoBz=uCz + E, where u=l, E=0

At each round, the prover commits (via homomorphic commitment) to w;
and y; to complete the commitment of z; =(y;.;,y;w;). Also to T;.

"Folder” picks r; and computes commitment of z() = z(-D) + rjz; . Also of
EG) = EG-D 4+ rj2E + rjTj = EG-D + ryT; (since E=0). Let ul) = ul-D) 4 1y,

Finally prover gives a SNARK for ERICS with EM, z((committed), u®,yn..
@ Adapting RICS SNARKs that use homomorphic commitments fo ERICS

Folding for Iteration

! Y1 Yi-1 Yi Yn Yn+l
r r FOldJ' r
! com(zl-) 4 TI com(z) A com(zM)
com(EG-D), u; com(E(J'))>u-
» Uj-1 P, fay com(EM), un p |$ Y;
| com(z J-)| m
com(T))

Nova: Convert to a SNARK, by moving folders into the computation

represented by the ERICS

Only one verification at the end

@ Verifier may be interested in (yy,...,Yns1), not just ynu

@ Fix: The output of the computation will be y'j = (y;,y()) where yl) =
Hash(y;j, yi-D). In addition to the above proof, prover can send
Y1,....¥Yn+1, SO that y(+D) can be checked.

Note: As before, provable knowledge soundness degrades exponentially
with number of steps. May be directly assumed as a heuristic.

