
Composition and Iteration for
SNARKs

Lecture 23

Composition

Outsourcing the verification back to the prover

Proof for statement !: Proof Ã1 that there exists a proof Ã0 for

! which will be accepted by a verifier V0

Can make the proof shorter and the verification faster

Prover’s work increases, but not by much if Ã0 short & V0 fast

Can make the overall proof ZK if the outer proof Ã1 is ZK

Composition

Overheads/limiting factors

Once the witness is short enough, succinctness not possible

No more a secure scheme in ROM even if Ã0,Ã1 were: Hash
function used in Ã0 is implemented as a hash function

Knowledge soundness degrades: For a time t adversary, Ext1
runs in time poly1(t) to extract Ã0. Ext0 extracts witness from
Ext1 in time poly0(poly1(t)).

Suppose ! is for circuits over a field F(0) and the computation of

V0 is over a field F(1), then Ã1 should support statements over
F(1). May limit choice of the underlying proof systems.

Composition
Proof for statement !: Proof Ã1 that there exists a proof Ã0 for !

which will be accepted by a verifier V0

Suppose ! over a field F(0) and verifying Ã0 uses computations over

a field F(1), then Ã1 should support statements over F(1)

Recall: when using discrete-log based polynomial commitment
schemes, the field for the polynomial is Fp, where p is the order of

the cyclic group where discrete log is assumed to be hard

The most efficient candidates for such groups are elliptic curve
groups. Such a group consists of a set of p points of the form
(x,y) * F2 for some other “base field” F, and the group

operations use field operations over F. Here F(0) is Fp, F(1) is F.

Verification of Ã1 will be over another field F(2). For deeper
composition a proof system for statements in F(2) needed.

E.g., From 2 groups of order p, q, with base fields Fq, Fp, resp.

Iterative Statements

Many computations encountered in applications are iterative in
nature

e.g., evaluating a Merkle-Damgard iterated hash function

Goals:

To reduce prover’s total effort

Linear in the number of steps

To allow different provers to carry out different steps

w1

v1

u1

x1

y1

w2

v2

u2

x2

y2

wn

vn+1

un+1

xn

yn+1

yn

Iterative Statements

When propagating proof

Omit xi (except x1) as verifier cannot take all xi directly as
input. Can instead include a Merkle hash of all xi in x1, and wi

can include the opening to xi

Omit ui by instead including a hiding commitment of ui in yi, and
opening it in wi+1

Omit vi and include it in yi as all of public output needs to go
into the next stage’s verifier

w1

v1

u1

x1

y1

w2

v2

u2

x2

y2

yn

wn

vn+1

un+1

xn

yn+1

Iterative Statements

Naïve scheme: At each step, give a proof that the computation in
the last step is consistent with the previous step’s output

Allows incremental proving/verification: can forget witnesses/
proofs from previous steps

Prover’s time is linear in n (if each step of computation is taken
to be of constant time)

But overall proof is long, and verification takes time
proportional to n

w1

x

y1

w2

y2

wn

yn+1yn

P2

Ã2

P1 V1

Ã1

Pn+1 Vn+1

Ãn+1

Vn

Ãn

Iterative Statements

Idea: Move verification into the iterated computation

Statement proven by Pi+1 includes that Vi accepted its proof

Note: Cannot prove soundness of the overall scheme in the Random
Oracle Model, since the hash function modelled as the RO is now part of
the computation

Note: Provable knowledge soundness degrades exponentially with number
of steps. May be directly assumed as a heuristic.

Prover’s time and space requirements are still linear in the number of
steps. But each step now has a larger computation.

With Composition

w1

x

y1

w2

y2

wn

yn+1yn

P2P1

V1

Pn+1 Vn+1

Vn

Ã2Ã1 Ãn+1Ãn

Folding
A technique for realising iteration more efficiently for the prover

Will use R1CS representation of F

F(yj-1) = yj iff #z=(yj-1,yj,w) s.t. AzÿBz=Cz

Idea: Combine two R1CS instances (with same A,B,C) into a single
R1CS instance, so that the latter can be satisfied only if the
original instances can both be (with high probability)

Uses a more general representation: “Extended” R1CS

Az ÿ Bz = u Cz + E, where u*F and E*Fm is a vector

Given instances Az1 ÿ Bz1 = u1Cz1 + E1 and Az2 ÿ Bz2 = u2Cz2 + E2,
define instance Az ÿ Bz = uCz + E, where u = u1+ru2 and E is such
that z=z1+rz2 satisfies

E = E1 + r2E2 + rT, where T has the “cross terms”:
T = Az1ÿBz2 + Az2ÿBz1 - u1Cz2 - u2Cz1

For any row, <ai,z1+rz2> <bi,z1+rz2> = (u1+ru2)<ci,z1+rz2> + E1i + r2E2i +
rTi holds for at most two values of r, unless all 3 coefficients of r
are 0: requiring the three conditions above to hold for that row

Folding for Iteration

Expanded R1CS representation of F:
F(yj-1) = yj iff #z=(yj-1,yj,wj) s.t. AzÿBz=uCz + E, where u=1, E=0

At each round, the prover commits (via homomorphic commitment) to wj
and yj to complete the commitment of zj =(yj-1,yj,wj). Also to Tj.

“Folder” picks rj and computes commitment of z(j) = z(j-1) + rjzj . Also of
E(j) = E(j-1) + rj

2E + rjTj = E(j-1) + rjTj (since E=0). Let u(j) = u(j-1) + rj.

Finally prover gives a SNARK for ER1CS with E(n), z(n) (committed), u(n),yn+1

Adapting R1CS SNARKs that use homomorphic commitments to ER1CS

w1

x

y1

wj

yjyj-1

wn

yn+1yn

Pj Foldj

com(zj)
P V

Ã

com(Tj)

com(z(j))

com(E(j)), uj

com(z(j-1))

com(E(j-1)), uj-1

com(z(n))

com(E(n)), un

Folding for Iteration

Nova: Convert to a SNARK, by moving folders into the computation
represented by the ER1CS

Only one verification at the end

Verifier may be interested in (y1,…,yn+1), not just yn+1

Fix: The output of the computation will be y’j = (yj,y(j)) where y(j) =
Hash(yj, y(j-1)). In addition to the above proof, prover can send
y1,…,yn+1, so that y(n+1) can be checked.

Note: As before, provable knowledge soundness degrades exponentially
with number of steps. May be directly assumed as a heuristic.

w1

x

y1

wj

yjyj-1

wn

yn+1yn

Pj

Foldj

com(zj)
P V

Ã

com(Tj)

com(z(j))

com(E(j)), uj

com(z(j-1))

com(E(j-1)), uj-1

com(z(n))

com(E(n)), un

