
Advanced Tools from  

 Modern Cryptography

Manoj Prabhakaran
IIT Bombay

Lecture 1

Basics: Indistinguishability

Outline

Independence

Statistical Indistinguishability

Computational Indistinguishability

A Game

A “dealer” and two “players” Alice and Bob (computationally
unbounded)

Dealer has a message, say two bits m1m2

She wants to “share” it among the two players so that
neither player by herself/himself learns anything about the
message, but together they can find it

Bad idea: Give m1 to Alice and m2 to Bob

Other ideas?

Sharing a bit

To share a bit m, Dealer picks a uniformly random bit b and gives
a := m⊕b to Alice and b to Bob

Together they can recover m as a⊕b

Each party by itself learns nothing about m: for each possible
value of m, its share has the same distribution  
 

 

i.e., Each party’s “view” is independent of the message

m = 0 → (a,b) = (0,0) or (1,1) w.p. 1/2 each

m = 1 → (a,b) = (1,0) or (0,1) w.p. 1/2 each

a = ShareA(m;r) = m⊕r 
b = ShareB(m;r) = r .

Is the message m really secret?

Alice or Bob can correctly find the bit m with probability ½, by

randomly guessing

Worse, if they already know something about m, they can do
better (Note: we didn’t say m is uniformly random!)

But they could have done this without obtaining the shares

The shares didn’t leak any additional information to either party

Typical crypto goal: preserving secrecy

What Alice (or Bob) knows about the message after seeing her
share is the same as what she knew a priori

Secrecy

What Alice knows about the message a priori: probability
distribution over the message

For each message m, Pr[msg=m]

What she knows after seeing her share (a.k.a. her view)

Say view is v. Then new distribution: Pr[msg=m | view=v]

Secrecy: ∀ v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]

i.e., view is independent of message

Equivalently, ∀ v, ∀ m, Pr[view=v | msg=m] = Pr[view=v]

i.e., for all possible values of the message, the view is
distributed the same way

i.e., ∀ m1,m2 { ShareA(m1;r) }r ≡ { ShareA(m2;r) }r

Secrecy

Equivalent formulations:

For all possible values of the message, the view is distributed
the same way

∀ v, ∀m1, m2, Pr[view=v | msg=m1] = Pr[view=v | msg=m2]

View and message are independent of each other

∀ v, ∀ m, Pr[msg=m, view = v] = Pr[msg = m] × Pr[view = v]

View gives no information about the message

∀ v, ∀ m, Pr[msg=m | view=v] = Pr[msg = m]

Important: can’t say Pr[msg=m1 | view=v] = Pr[msg=m2 | view=v]
(unless the prior is uniform)

Secrecy
Doesn’t involve message

distribution at all.

Require a message
distribution (with full

support)

Require a message
distribution (with full

support)

Consider the following secret-sharing scheme

Message space = { Jan, Feb, Mar }

Jan → (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each

Feb → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each

Mar → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or
(11,00) w/ prob 1/8 each

Reconstruction: Let β1β2 = shareAlice ⊕ shareBob. Map β1β2 as
follows: 00 → Jan, 01 → Feb, 10 or 11 → Mar

Is it secure?

Exercise

Shared-key (Private-key) Encryption

Key Generation: Randomized

K ← K , uniformly randomly drawn from the key-space

(or according to a key-distribution)

Encryption: Deterministic

Enc: M ×K →C

Decryption: Deterministic

Dec: C ×K → M

The Syntax

Onetime Encryption

Needs randomisation for
more-than-once encryption

Perfect Secrecy

0 1 2 3

a x y y z

b y x z y

M

K

Onetime Encryption

Perfect secrecy: ∀ m, m’ ∈ M

{Enc(m,K)}K←KeyGen = {Enc(m’,K)}K←KeyGen

Distribution of the ciphertext is defined 
by the randomness in the key

In addition, require correctness

∀ m, K, Dec(Enc(m,K), K) = m

E.g. One-time pad: M = K = C = {0,1}n and

Enc(m,K) = m⊕K, Dec(c,K) = c⊕K

More generally M = K = C = G (a finite group)

and Enc(m,K) = m+K, Dec(c,K) = c-K

Distribution of the ciphertext

Assuming K uniformly drawn from K

Pr[Enc(a,K)=x] = ¼,  
Pr[Enc(a,K)=y] = ½,  
Pr[Enc(a,K)=z] = ¼

Same for Enc(b,K).

Relaxing  
Secrecy Requirement

When view is not exactly independent of the message

Next best: view close to a distribution that is independent of
the message

Two notions of closeness: Statistical and Computational

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Statistical Difference
Given two distributions A and B over the same sample space, how
well can a test T distinguish between them?

T given a single sample drawn from A or B

How differently does it behave in the two cases?

Δ(A,B) := max T | Prx←A[T(x)=1] - Prx←B[T(x)=1] |

Pr
ob
ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

a.k.a. Statistical Distance or Total Variation Distance

Indistinguishability
Two distributions are statistically indistinguishable from each
other if the statistical difference between them is “negligible”

What is negligible? 2-20 ? 2-40 ? 2-80 ? Let the “user” decide!

Security guarantees will be given asymptotically as a function of

the security parameter

A knob that can be used to set the security level

Given {Ak}, {Bk}, Δ(Ak,Bk) is a function of the security parameter k

Negligible: reduces “very quickly” as the knob is turned up

“Very quickly”: quicker than 1/poly for any polynomial poly

So that if negligible for one sample, remains negligible for
polynomially many samples

ν(k) is said to be negligible if ∀ d ≥ 0, ∃ N s.t. ∀ k>N, ν(k) < 1/kd

Indistinguishability

Distribution ensembles {Ak}, {Bk} are statistically indistinguishable
if ∃ negligible ν(k) s.t. Δ(Ak,Bk) ≤ ν(k)

Δ(Ak,Bk) := max T | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] |

Can rewrite as: ∀ tests T, ∃ negligible ν(k) s.t.  
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

Distribution ensembles {Ak}, {Bk} computationally indistinguishable
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

In particular, test
that is best for all k

Really need to allow a
different ν for each T

Indistinguishability

Distribution ensembles {Ak}, {Bk} computationally indistinguishable
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

Efficient: Probabilistic Polynomial Time (PPT)

PPT T: a family of randomised programs Tk (one for each value
of the security parameter k), s.t. there is polynomial p with
each Tk running for at most p(k) time

(Could restrict to uniform PPT. But by default, we’ll allow  
non-uniform.)

Non-Uniform

Ak ≈ Bk

