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Basics: Indistinguishability
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Independence


Statistical Indistinguishability


Computational Indistinguishability



A Game

A “dealer” and two “players” Alice and Bob (computationally 
unbounded)


Dealer has a message, say two bits m1m2


She wants to “share” it among the two players so that 
neither player by herself/himself learns anything about the 
message, but together they can find it


Bad idea: Give m1 to Alice and m2 to Bob


Other ideas?



Sharing a bit

To share a bit m, Dealer picks a uniformly random bit b and gives 
a := m⊕b to Alice and b to  Bob


Together they can recover m as a⊕b


Each party by itself learns nothing about m: for each possible 
value of m, its share has the same distribution  
 

 

i.e., Each party’s “view” is independent of the message

m = 0 → (a,b) = (0,0) or (1,1) w.p. 1/2 each

m = 1  → (a,b) = (1,0) or (0,1) w.p. 1/2 each

a = ShareA(m;r) = m⊕r 
b = ShareB(m;r) = r   . 



Is the message m really secret?


Alice or Bob can correctly find the bit m with probability ½, by 

randomly guessing


Worse, if they already know something about m, they can do 
better (Note: we didn’t say m is uniformly random!)


But they could have done this without obtaining the shares


The shares didn’t leak any additional information to either party


Typical crypto goal: preserving secrecy


What Alice (or Bob) knows about the message after seeing her 
share is the same as what she knew a priori

Secrecy



What Alice knows about the message a priori: probability 
distribution over the message


For each message m, Pr[msg=m]


What she knows after seeing her share (a.k.a. her view)


Say view is v. Then new distribution: Pr[msg=m | view=v]


Secrecy: ∀ v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]


i.e., view is independent of message


Equivalently, ∀ v, ∀ m, Pr[view=v | msg=m] = Pr[view=v]


i.e., for all possible values of the message, the view is 
distributed the same way


i.e., ∀ m1,m2  { ShareA(m1;r) }r ≡ { ShareA(m2;r) }r 

Secrecy



Equivalent formulations:


For all possible values of the message, the view is distributed 
the same way


∀ v, ∀m1, m2, Pr[view=v | msg=m1] = Pr[view=v | msg=m2]


View and message are independent of each other


∀ v, ∀ m, Pr[msg=m, view = v] = Pr[msg = m] × Pr[view = v] 


View gives no information about the message


∀ v, ∀ m, Pr[msg=m | view=v] = Pr[msg = m]


Important: can’t say Pr[msg=m1 | view=v] = Pr[msg=m2 | view=v] 
(unless the prior is uniform)

Secrecy
Doesn’t involve message 

distribution at all.

Require a message 
distribution (with full 

support)

Require a message 
distribution (with full 

support)



Consider the following secret-sharing scheme


Message space = { Jan, Feb, Mar }


Jan  → (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each


Feb  → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each


Mar → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or 
(11,00) w/ prob 1/8 each


Reconstruction: Let β1β2 = shareAlice ⊕ shareBob. Map β1β2 as 
follows: 00 → Jan, 01 → Feb, 10 or 11 → Mar


Is it secure?

Exercise



Shared-key (Private-key) Encryption


Key Generation: Randomized


K ← K , uniformly randomly drawn from the key-space 

(or according to a key-distribution)


Encryption: Deterministic


Enc: M ×K →C


Decryption: Deterministic


Dec: C ×K → M 

The Syntax

Onetime Encryption

Needs randomisation for 
more-than-once encryption



Perfect Secrecy

0 1 2 3

a x y y z

b y x z y

M

K

Onetime Encryption

Perfect secrecy: ∀ m, m’ ∈ M


{Enc(m,K)}K←KeyGen = {Enc(m’,K)}K←KeyGen


Distribution of the ciphertext is defined 
by the randomness in the key


In addition, require correctness


∀ m, K,   Dec( Enc(m,K), K) = m


E.g. One-time pad: M = K = C  = {0,1}n and      

Enc(m,K) = m⊕K, Dec(c,K) = c⊕K


More generally M = K = C = G (a finite group) 

and Enc(m,K) = m+K, Dec(c,K) = c-K

Distribution of the ciphertext

Assuming K uniformly drawn from K 


Pr[ Enc(a,K)=x ] = ¼,  
Pr[ Enc(a,K)=y ] = ½,  
Pr[ Enc(a,K)=z ] = ¼

______________ 
Same for Enc(b,K).



Relaxing  
Secrecy Requirement

When view is not exactly independent of the message


Next best: view close to a distribution that is independent of 
the message


Two notions of closeness: Statistical and Computational
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Statistical Difference
Given two distributions A and B over the same sample space, how  
well can a test T distinguish between them?


T given a single sample drawn from A or B


How differently does it behave in the two cases?


Δ(A,B) := max T | Prx←A[T(x)=1] - Prx←B[T(x)=1] |
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a.k.a. Statistical Distance or Total Variation Distance



Indistinguishability
Two distributions are statistically indistinguishable from each 
other if the statistical difference between them is “negligible”


What is negligible? 2-20 ? 2-40 ? 2-80 ? Let the “user” decide!


Security guarantees will be given asymptotically as a function of 

the security parameter


A knob that can be used to set the security level


Given {Ak}, {Bk}, Δ(Ak,Bk) is a function of the security parameter k


Negligible: reduces “very quickly” as the knob is turned up


“Very quickly”: quicker than 1/poly for any polynomial poly


So that if negligible for one sample, remains negligible for 
polynomially many samples


ν(k) is said to be negligible if ∀ d ≥ 0, ∃ N s.t. ∀ k>N, ν(k) < 1/kd



Indistinguishability

Distribution ensembles {Ak}, {Bk} are statistically indistinguishable 
if ∃ negligible ν(k) s.t. Δ(Ak,Bk) ≤ ν(k) 


Δ(Ak,Bk) := max T | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] |


Can rewrite as: ∀ tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)


Distribution ensembles {Ak}, {Bk} computationally indistinguishable 
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

In particular, test 
that is best for all k

Really need to allow a 
different ν for each T 



Indistinguishability

Distribution ensembles {Ak}, {Bk} computationally indistinguishable 
if ∀ “efficient” tests T, ∃ negligible ν(k) s.t.  
     | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)


Efficient: Probabilistic Polynomial Time (PPT)


PPT T: a family of randomised programs Tk (one for each value 
of the security parameter k), s.t. there is polynomial p with 
each Tk running for at most p(k) time


(Could restrict to uniform PPT. But by default, we’ll allow  
non-uniform.)

Non-Uniform

Ak ≈ Bk


