Advanced Tools from
Modern Cryptography

Lecture 1
Basics: Indistinguishability

Manoj Prabhakaran
IIT Bombay

Outline

@ Independence
@ Statistical Indistinguishability
@ Computational Indistinguishability

D

D

D

I-'E)

A Game

A “dealer” and two “players” Alice and Bob (computationally
unbounded)

Dealer has a message, say two bits mim;

She wants to “share” it among the two players so that
neither player by herself/himself learns anything about the
message, but together they can find it

Bad idea: Give m; to Alice and m2 to Bob

Other ideas?

Sharing a bit

@ To share a bit m, Dealer picks a uniformly random bit b and gives

a := m®b to Alice and b to Bob

v

@ Together they can recover m as a®b

@ Each party by itself learns nothing about m: for each possible

\

a = Sharea(m;r) = mer
b = Shareg(m;r) = r

~

y,

value of m, its share has the same distribution

\

m =0 — (a,b) = (0,0) or (1,1) w.p. 1/2 each
m=1 — (ab) = (1,0) or (0,1) w.p. 1/2 each

@ i.e., Each partys “view” is independent of the message

D

Q

Secrecy

Is the message m really secret?

Alice or Bob can correctly find the bit m with probability %, by
randomly guessing

@ Worse, if they already know something about m, they can do
better (Note: we didnt say m is uniformly random!)

But they could have done this without obtaining the shares

@ The shares didnt leak any additional information to either party

Typical crypto goal: preserving secrecy

@ What Alice (or Bob) knows about the message after seeing her
share is the same as what she knew a priori

Secrecy

@ What Alice knows about the message a priori: probability
distribution over the message

@ For each message m, Pr[msg=m]
@ What she knows after seeing her share (a.k.a. her view)
@ Say view is v. Then new distribution: Pr[msg=m | view=v]

@ Secrecy: V v, V m, Pr[msg=m | view = v] = Pr[msg = m]

)

@ i.e., view is independent of message
@ Equivalently, v v, v m, Prlview=v | msg=m] = Pr[view=v]

@ i.e., for all possible values of the message, the view is
distributed the same way

@ i.e., V. my,m2 { Sharea(mi;r) }- = §{ Sharea(mz;r) }-

Secrecy

Doesn't involve message
distribution at all.

@ Equivalent formulations:

@ For all possible values of the message, the view is distributed
the same way

@ VY v, vmy, mz, Prlview=v | msg=m;] = Pr[view=v | msg=m:]
@ View and message are independent of each other

@ V Vv, V.m, Pr[msg=m, view = v] = Pr[msg = m]\x Pr[view = v]

Require a message
distribution (with full
support)

@ Important: cant say Pr[msg=m; | view=v] = Pr[msg=m; | view=v]
(unless the prior is uniform)

)

@ View gives no information about the message T)

@ Vv, vV m, Pr[msg=m | view=v] = Pr[msg = m]

v,

Exercise

@ Consider the following secret-sharing scheme
@ Message space = { Jan, Feb, Mar }
@ Jan — (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each
@ Feb — (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each

a Mar — (00,10), (01,11), (10,00), (11,01), (0O,11), (01,10), (10,01) or
(11,00) w/ prob 1/8 each

@ Reconstruction: Let Bif2 = shareaiice ® sharege. Map B182 as
follows: 00 — Jan, 01 — Feb, 10 or 11 — Mar

@ Is it secure?

Onetime Encryption
The Syntax
& Shared-key (Private-key) Encryption
a Key Generation: Randomized

a K < %, uniformly randomly drawn from the key-space
(or according to a key-distribution)

\

@ Encryption: Deterministic Needs randomisation for

more-than-once encryption
@ Enc: XK —C)

@ Decryption: Defterministic

a Dec: CxXK— M

Onetime Encryption

Perfect Secrecy

a Perfect secrecy: vm, m' e &7

@ {Enc(mzK)}KeKeyGen = {Enc(m’zK)}KeKeyGen

@(Distribution of the ciphertext Jdeﬁned
by the randomness in the key

@ In addition, require correctness
a v m, K, Dec(Enc(mK), K) = m

@ E.g. One-time pad: 7 = %= C = {0,1}" and
Enc(m,K) = maeK, Dec(c,K) = caK

\

~N

Assuming K uniformly drawn from %
Pr[Enc(a,K)=x] = %4,

Pr[Enc(a,K)=y] = %,
Pr[Enc(aK)=z] = 4

Same for Enc(b,K).

@ More generally 97 = %= C= ¢ (a finite group)

and Enc(m,K) = m+K, Dec(cK) = c-K

Relaxing
Secrecy Requirement

@ When view is not exactly independent of the message

@ Next best: view close to a distribution that is independent of
the message

@ Two notions of closeness: Statistical and Computational

a.K.a. Statistical Distance or Total Variation Distance J

Statistical Difference

@ Given two distributions A and B over the same sample space, how
well can a test T distinguish between them?

@ T given a single sample drawn from A or B
@ How differently does it behave in the two cases?

@ A(A,B) := max 1 | Preca[T(x)=1] - Prys[T(x)=1] |

b |
0.1 ...

Probability

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D

D

D

D

Indistinguishability
Two distributions are statistically indistinguishable from each
other if the statistical difference between them is “negligible”
What is negligible? 2-20? 2-40? 2-80 2 | et the “user” decide!

Security guarantees will be given asymptotically as a function of
the security parameter

@ A knob that can be used to set the security level

Given {Ax}, {Bxs, A(Ak,Bk) is a function of the security parameter k
Negligible: reduces “very quickly” as the knob is turned up

@ “Very quickly”: quicker than 1/poly for any polynomial poly

@ So that if negligible for one sample, remains negligible for
polynomially many samples

@ v(k) is said to be negligible if v d > 0, 3 N s.t. v k>N, v(k) < 1/kd

Indistinguishability

@ Distribution ensembles {A«}, {Bx} are statistically indistinguishable
if 3 negligible vw(k) s.t. A(Ak,Bk) < w(k)

& A(Ak,BK) := max T | PricaldT(x)=1] - Prys[T(x)=1] |

@ Can rewrite as: v tests T, 3 negligible v(k) s.t.

| PryeadT(x)=1] - Precg [T(x)=1] | < v(k) L In particular, test }
that is best for all k

@ Distribution ensembles {Ax}, 1Bk} computationally indistinguishable
if v "efficient” tests T, 3 negligible v(k) s.t.

| PrecalT()=1] = PrecslT(x)=1] | < Vﬁ Really need to allow a J

different v for each T

Indistinguishability

@ Distribution ensembles {A«}, 1Bk} computationally indistinguishable

if v “efficient” tests T, 3 negligible v(k) s.t. |
o

| Prxead T(x)=1] - Prxs [T(x)=1] | < v(k)

a Efficient: Probabilistic Polynomial Time (PPT) [Non-Uniform]

V
@ PPT T: a family of randomised programs Tk (one for each value
of the security parameter k), s.t. there is polynomial p with

each Tk running for at most p(k) time

@ (Could restrict to uniform PPT. But by default, we'll allow
non-uniform.)

