Advanced Tools from Modern Cryptography

Lecture 2

First Tool: Secret-Sharing

Secret-Sharing

- Dealer encodes a message into n shares for n parties
 - Privileged subsets of parties should be able to reconstruct the secret
 - View of an unprivileged subset should be independent of the secret
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions
 - Secure multi-party computation
 - Attribute-Based Encryption
 - Leakage resilience ...

- (n,t)-secret-sharing
 - Divide a message m into n shares s₁,...,s_n, such that
 - any t shares are enough to reconstruct the secret
 - up to t-1 shares should have no information about the secret
- Recall last time: (2,2) secret-sharing

e.g., (s₁,...,s_{t-1}) has the same distribution for every m in the message space

© Construction: (n,n) secret-sharing

Additive Secret-Sharing

- Message-space = share-space = G, a finite group
 - $_{\odot}$ e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - \circ or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)
 - $or, G = \mathbb{Z}_p$ (group of integers mod p)
- Share(M):
 - Pick s₁,...,s_{n-1} uniformly at random from G
- @ Reconstruct($s_1,...,s_n$): $M = s_1 + ... + s_n$
- Claim: This is an (n,n) secret-sharing scheme [Why?]

SEOOK .

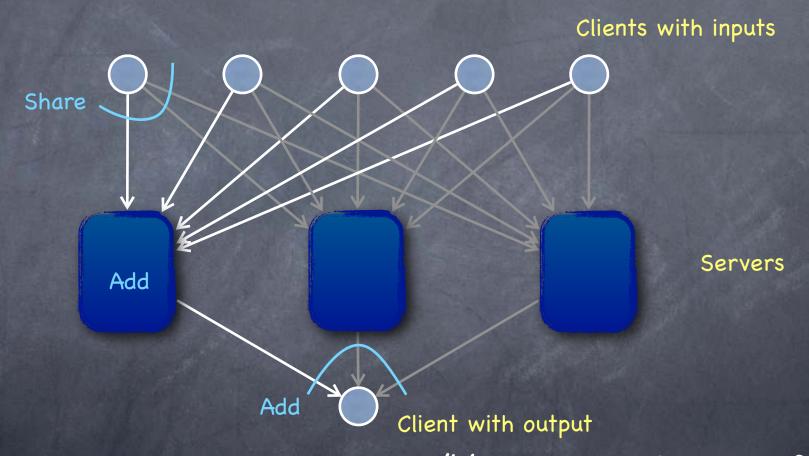
Additive Secret-Sharing: Proof

- Share(M):
 - \circ Pick $s_1,...,s_{n-1}$ uniformly at random from G
- \circ Reconstruct(s₁,...,s_n): $M = s_1 + ... + s_n$
- Claim: Upto n-1 shares give no information about M
- Proof: Let $T \subseteq \{1,...,n\}$, |T| = n-1. We shall show that $\{s_i\}_{i\in T}$ is distributed the same way (in fact, uniformly) irrespective of what M is.
 - For $T = \{1,...,n-1\}$, true by construction. How about other T?
 - For concreteness consider $T=\{2,...,n\}$. Fix any (n-1)-tuple of elements in $G,(g_1,...,g_{n-1})\in G^{n-1}$. To prove $\Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})]$ is same for all M.
 - Fix any M.
 - \circ $(s_2,...,s_n) = (g_1,...,g_{n-1}) \Leftrightarrow (s_2,...,s_{n-1}) = (g_1,...,g_{n-2})$ and $s_1 = M-(g_1+...+g_{n-1})$.
 - So $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})] = Pr[(s_1,...,s_{n-1})=(a,g_1,...,g_{n-2})], a:=(M-(g_1+...+g_{n-1}))$

- But $Pr[(s_1,...,s_{n-1})=(a,g_1,...,g_{n-2})]=1/|G|^{n-1}$, since $(s_1,...,s_{n-1})$ are picked uniformly at random from G
- Hence $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})] = 1/|G|^{n-1}$, irrespective of M.

An Application

Gives a "private summation" protocol (for commutative groups)



"Secure against passive corruption" (i.e., no colluding set of servers/clients learn more than what they must) if at least one server stays out of the collusion

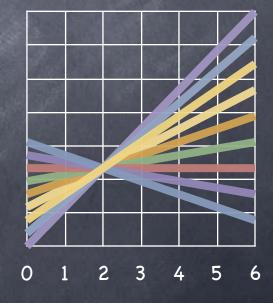
- Construction: (n,2) secret-sharing
- Message-space = share-space = F, a finite field (e.g. integers mod prime)
 - Share(M): pick random r. Let $s_i = r \cdot a_i + M$ (for i=1,...,n < |F|)
 - Reconstruct(s_i , s_j): $r = (s_i-s_j)/(a_i-a_j)$; $M = s_i r \cdot a_i$

a_i are n distinct, non-zero field elements

- Each s_i by itself is uniformly distributed,
 irrespective of M [Why?]
 Since a_{i-1} exists, exactly one
- "Geometric" interpretation

Since ai⁻¹ exists, exactly one solution for r·ai+M=d, for every value of d

- Sharing picks a random "line" y = f(x), such that f(0)=M. Shares $s_i = f(a_i)$.
- But can reconstruct the line from two points!



St. Oct.

(n,2) Secret-Sharing: Proof

- Share(M): pick random r ← F. Let $s_i = r \cdot a_i + M$ (for i=1,...,n < |F|)
 </p>
- Reconstruct(s_i , s_j): $r = (s_i-s_j)/(a_i-a_j)$; $M = s_i r \cdot a_i$
- Claim: Any one share gives no information about M
- Proof: For any i∈{1,...,n} we shall show that s_i is distributed the same way (in fact, uniformly) irrespective of what M is.
- ⊙ Consider any g∈F. We shall show that Pr[s_i =g] is independent of M.
- Fix any M.
- For any g ∈ F, $s_i = g \Leftrightarrow r \cdot i + M = g \Leftrightarrow r = (g-M) \cdot a_i^{-1}$ (since $a_i \neq 0$)
- So, $Pr[s_i=g] = Pr[r=(g-M)\cdot a_i^{-1}] = 1/|F|$, since r is chosen uniformly at random

Shamir Secret-Sharing

- (n,t) secret-sharing in a (large enough) field F
- Generalizing the geometric/algebraic view: instead of lines, use polynomials
 - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are $s_i = f(a_i)$.
 - ® Random polynomial with f(0)=M: $c_0 + c_1X + c_2X^2 + ... + c_{t-1}X^{t-1}$ by picking $c_0=M$ and $c_1,...,c_{t-1}$ at random.
 - ® Reconstruct($s_1,...,s_t$): Lagrange interpolation to find M= c_0
 - Need t points to reconstruct the polynomial. Given t-1 points, out of |F|^{t-1} polynomials passing through (0,M') (for any M') there is exactly one that passes through the t-1 points

Lagrange Interpolation

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t coefficients)

 - A linear system: W<u>c</u>=<u>s</u>, where W is a t×t matrix with ith row,
 W_i= (1 a_i a_i² ... a_i^{t-1})
 - W (called the Vandermonde matrix) is invertible
 - \odot \mathbf{c} = W⁻¹ \mathbf{s}

Linear Secret-Sharing

- Share(M): For some fixed n×t matrix W, let $\underline{s} = W.\underline{c}$ where $c_0 = M$ and other t-1 coordinates are random
 - The shares are subsets of coordinates of **s**

Shamir Secret-Sharing is of this form

- Reconstruction: pool together all the available coordinates of \mathbf{s} ; can reconstruct if there are enough equations to solve for c_0
 - © Claim: If not reconstructible, shares independent of secret
- May not correspond to a threshold access structure
- Reconstruction too is a linear combination of available shares (coefficients depending on which subset of shares available)

Linear Secret-Sharing

- Claim: If not reconstructible, shares independent of secret
- Suppose T ⊆ [n] s.t. c_0 not uniquely reconstructible from \underline{s}_T
 - @ i.e., solution space for $W_T \cdot \mathbf{c} = \mathbf{s}_T$ is an affine subspace of some dimension d≥1, and contains at least two points with distinct values α and β for \mathbf{c}_0
 - Then, $\forall \gamma \in F$, the solution space has a point with $c_0 = \gamma$ (e.g., linearly combine the above points with factors $(\gamma \beta)/(\alpha \beta)$ and $(\alpha \gamma)/(\alpha \beta)$)
 - Therefore, for any $\gamma \in F$, can add equation $c_0 = \gamma$ and get a solution space of dimension d-1
 - @ i.e., with $c_0=\gamma$, exactly $|F|^{d-1}$ choices of randomness that give \mathbf{s}_T
 - @ i.e., for all \underline{s}_T and γ , $Pr[view=\underline{s}_T \mid M=\gamma] = |F|^{d-1}/|F|^{t-1}$

Today

- Secret-sharing schemes
 - (n,t) Threshold secret-sharing
 - Additive sharing for (n,n)
 - Shamir secret-sharing for all (n,t)
 - Optimal (ideal) when |message-space| is a prime-power, larger than n
 - Linear secret-sharing