Advanced Tools from Modern Cryptography

Lecture 3 Secret-Sharing (ctd.)

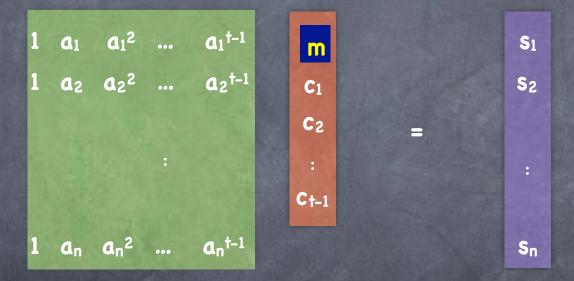
Secret-Sharing

Last time

- (n,t) secret-sharing
 - (n,n) via additive secret-sharing
 - Shamir secret-sharing for general (n,t)
 - Shamir secret-sharing is a linear secret-sharing scheme

Shamir Secret-Sharing

Share(m): Pick a random degree t-1 polynomial f(X) = ∑_{i∈{0..t-1}} c_iXⁱ, such that f(0)=m (i.e., c₀ = m). Shares are s_i = f(a_i), where a_i are distinct and non-zero.

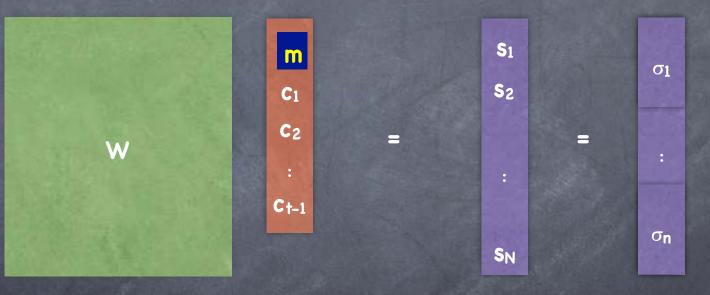


<u>Reconstruct(si1,...,sit)</u>: Lagrange interpolation to find m=c0
 i.e., solve for (m c1 ... ct-1) from t rows of the above system

Linear Secret-Sharing

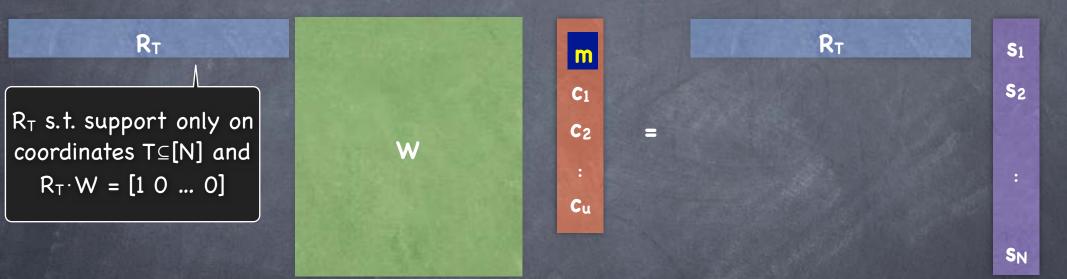
Share(M): For some fixed n×t matrix W, let $\underline{s} = W.\underline{c}$ where $c_0 = M$ and other t-1 coordinates are random

Shares are "sub-vectors" of **s**.



Linear Secret-Sharing

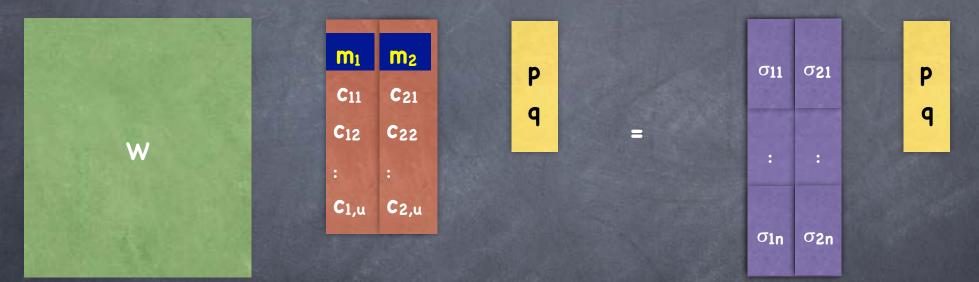
Reconstruct($\sigma_{i_1},...,\sigma_{i_t}$): pool together available coordinates T⊆[N].
 Can reconstruct if there are enough equations to solve for m.



Claim: ∀T ⊆ [n], s_T either fully determines m, or is independent of m
 If T ⊆ [N] s.t. [1 0 ... 0] not in the row span of W_T, for any γ ∈ F, we can add an equation m=γ to the system W_T·c = s_T. Number of solutions for c in this system is independent of γ.

Linear Secret-Sharing: Computing on Shares

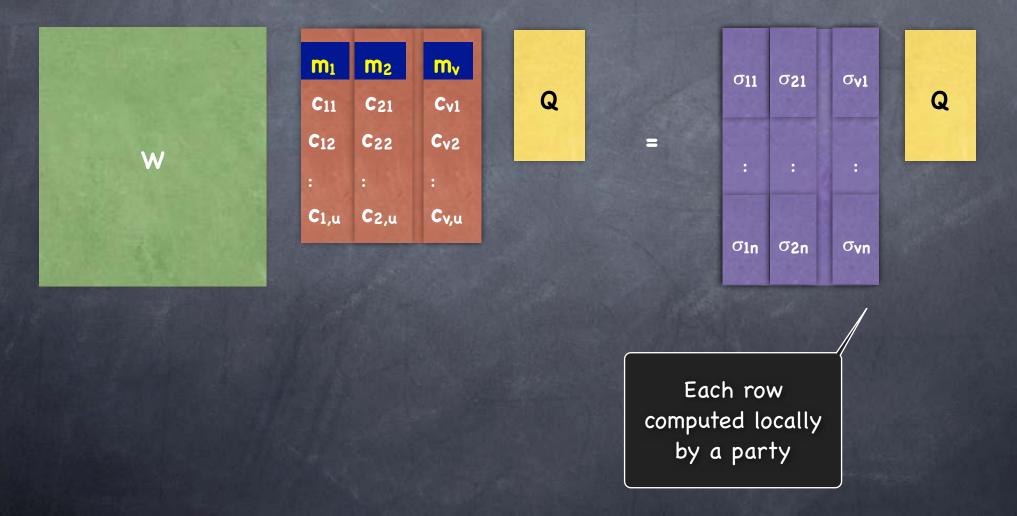
Suppose two secrets m₁ and m₂ shared using the same secretsharing scheme



• Then for any $p,q \in F$, shares of $p \cdot m_1 + q \cdot m_2$ can be computed <u>locally</u> by each party i as $\sigma_i = p \cdot \sigma_{1i} + q \cdot \sigma_{2i}$

Linear Secret-Sharing: Computing on Shares

More generally, can compute shares of any linear transformation



Switching Schemes

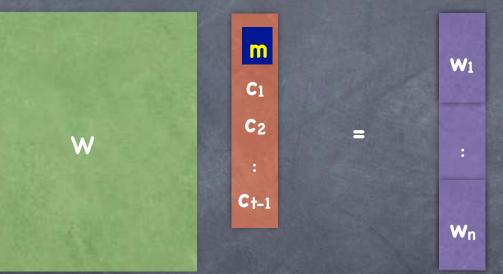
- Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"
- Given shares (w₁, ..., wₙ) ← W.Share(m)
- Share each w_i using scheme Z: $(\sigma_{i1},...,\sigma_{in}) \leftarrow Z$. Share (w_i)

Locally each party j reconstructs using scheme W:
 z_j ← W.Recon (σ_{1j},...,σ_{nj})

 \odot Claim: (z_1, \dots, z_n) is a valid Z-sharing of m

Linear Secret-Sharing: Switching Schemes

Given shares (w₁, ..., wₙ) ← W.Share(m)

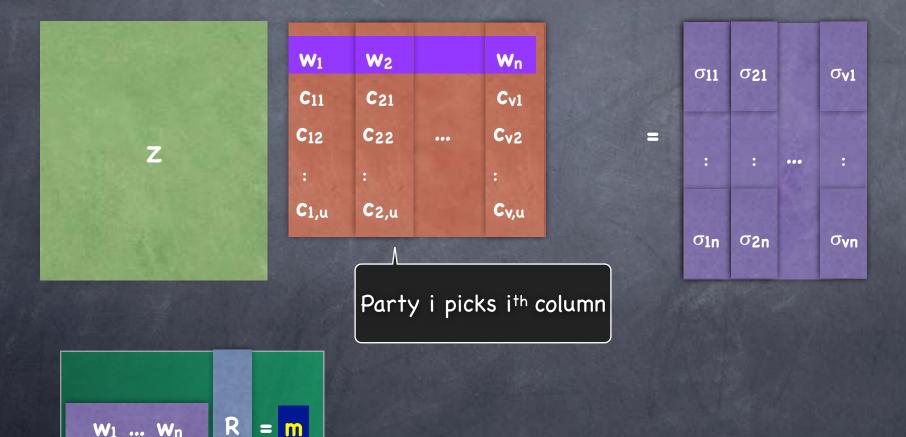


Recall reconstruction in W:



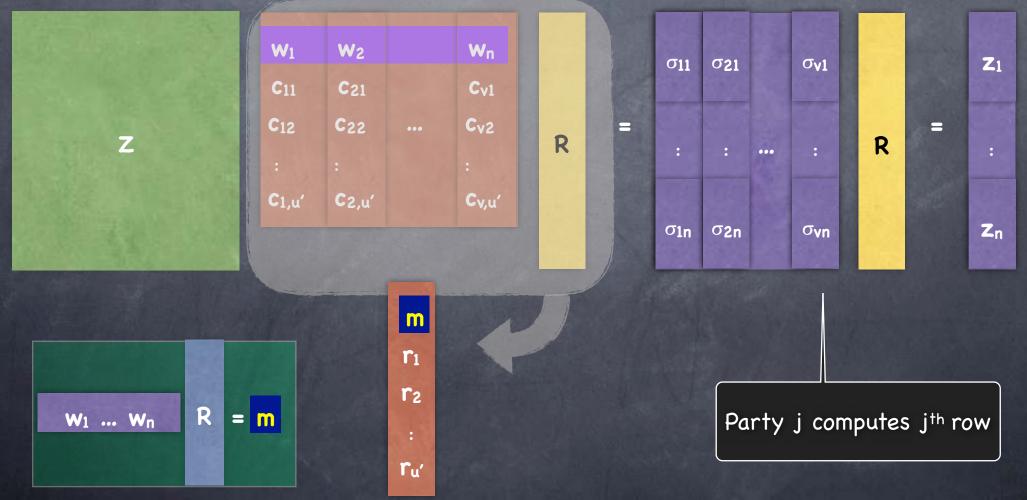
Linear Secret-Sharing: Switching Schemes

• Share each w_i using scheme Z: $(\sigma_{i1}, ..., \sigma_{in}) \leftarrow Z$. Share (w_i)



Linear Secret-Sharing: Switching Schemes

Locally each party j reconstructs using scheme W:
 z_j ← W.Recon (σ_{1j},...,σ_{nj})



Switching Schemes

- Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"
- Given shares (w₁, ..., wₙ) ← W.Share(m)
- Share each will using scheme Z: $(\sigma_{i1},...,\sigma_{in}) \leftarrow Z.Share(w_i)$

Locally each party j reconstructs using scheme W:
 z_j ← W.Recon (σ_{1j},...,σ_{nj})

- Claim: (z₁, ..., z_n) is a valid Z-sharing of m
- Icono Claim: If a party-set T⊆[n] is not allowed to learn the secret by both W and Z, then T learns nothing about m from this process
 - Exercise
 Exercise

More General Access Structures

 (n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret

o i.e., "access structure" $A = \{S: |S| ≥ t \}$, is the set of all subsets of parties who can If s*∈ reconstruct the secret

If $S^* \in \mathcal{A}$, then for all $S \supseteq S^*$, $S \in \mathcal{A}$.

 In general access structure could be any monotonic set of subsets

Shamir's secret-sharing solves threshold secret-sharing. How about the others?

More General Access Structures

Idea: For arbitrary monotonic access structure A, there is a "basis" B of minimal sets in A. For each S in B generate an (|S|,|S|) sharing, and distribute them to the members of S.
Works, but very "inefficient" |B| = (n choose t)

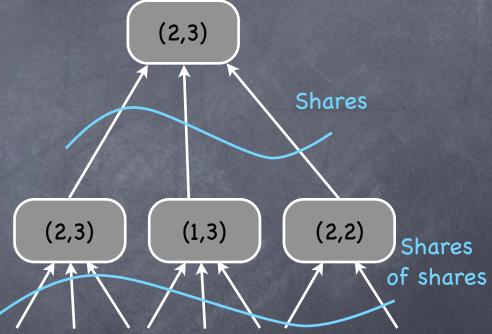
 \odot How big is \mathcal{B} ? (Say when \mathcal{A} is a threshold access structure)

Total share complexity = $\Sigma_{S \in \mathcal{B}}$ |S| field elements. (Compare with Shamir's scheme: n field elements in all.) $t \cdot (n \text{ choose t})$

More efficient schemes known for large classes of access structures

More General Access Structures

- A simple generalization of threshold access structures
 - A <u>threshold tree</u> to specify the access structure
 - Can realize by recursively threshold secret-sharing the shares
- Note: <u>linear</u> secret-sharing
- Fact: Access structures that admit linear secret-sharing are those which can be specified using "monotone span programs"



Efficiency

Main measure: size of the shares (say, total of all shares)

- Shamir's: each share is as as big as the secret (a single field element)
- Naïve scheme for arbitrary monotonic access structure: if a party is in N sets in B, N basic shares

 \odot N can be exponential in n (as $\mathcal B$ can have exponentially many sets)

- Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
 - Ideal: if all shares are only this big (e.g. Shamir's scheme)
 - Not all access structures have ideal schemes
- Non-linear schemes can be more efficient than linear schemes