
Advanced Tools from  

 Modern Cryptography

Lecture 3

Secret-Sharing (ctd.)

Secret-Sharing

Last time

(n,t) secret-sharing

(n,n) via additive secret-sharing

Shamir secret-sharing for general (n,t)

Shamir secret-sharing is a linear secret-sharing scheme

Shamir Secret-Sharing
Share(m): Pick a random degree t-1 polynomial f(X) = Σi∈{0..t-1} ciXi,
such that f(0)=m (i.e., c0 = m). Shares are si = f(ai), where ai are
distinct and non-zero. 
 

 

 

 

 

 

Reconstruct(si1,...,sit): Lagrange interpolation to find m=c0

i.e., solve for (m c1 … ct-1) from t rows of the above system

1 a1 a12 … a1t-1  

1 a2 a22 … a2t-1  

  

 : 

 

1 an an2 … ant-1

 m

c1  

c2

:  

ct-1

s1  

s2  

:  

 

sn

=

Linear Secret-Sharing
Share(M): For some fixed n×t matrix W, let s = W.c where  
c0 = M and other t-1 coordinates are random  

Shares are “sub-vectors” of s.  
 

 

 

 

 

 

 

 

 

 

W

 m

c1  

c2

:  

ct-1

s1  

s2  

:  

 

sN

=

 

:  

 

=

σn

σ1

Linear Secret-Sharing
Reconstruct(σi1,…,σit): pool together available coordinates T⊆[N]. 

Can reconstruct if there are enough equations to solve for m. 
 

 

 

 

 

 

Claim: ∀T ⊆ [n], sT either fully determines m, or is independent of m

If T ⊆ [N] s.t. [1 0 … 0] not in the row span of WT, for any γ∈F,

we can add an equation m=γ to the system WT⋅c = sT. Number

of solutions for c in this system is independent of γ.

W

 m

c1  

c2

:  

cu

=

RTRT

RT s.t. support only on
coordinates T⊆[N] and

RT⋅W = [1 0 … 0]

s1  

s2  

:  

 

sN

Suppose two secrets m1 and m2 shared using the same secret-
sharing scheme  
 

 

 

 

 

 

Then for any p,q ∈ F, shares of p⋅m1 + q⋅m2 can be computed locally
by each party i as σi = p⋅σ1i + q⋅σ2i

 

 

 

W

 m1

 c11  

 c12

 :  

 c1,u

=

 m2

 c21  

 c22

 :  

 c2,u

Linear Secret-Sharing:
Computing on Shares

p  

q

 

:  

 

σ1n

σ11  

:  

 

σ2n

σ21 p  

q

 

 

 

More generally, can compute shares of any linear transformation

W

 m1

 c11  

 c12

 :  

 c1,u

=

 m2

 c21  

 c22

 :  

 c2,u

 mv

 cv1  

 cv2

 :  

 cv,u

Linear Secret-Sharing:
Computing on Shares

Q Q
 

:  

 

σ1n

σ11  

:  

 

σvn

σv1 

:  

 

σ2n

σ21

Each row
computed locally

by a party

Switching Schemes
Can move from any linear secret-sharing scheme W to any
other linear secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Locally each party j reconstructs using scheme W:  
zj ← W.Recon (σ1j,…,σnj)

Claim: (z1, … , zn) is a valid Z-sharing of m

Given shares (w1, …, wn) ← W.Share(m)  
 

 

 

 

 

 

Recall reconstruction in W:

Linear Secret-Sharing:
Switching Schemes

W

 m

c1  

c2

:  

ct-1

=

 

:  

 

wn

w1

R

w1  

:  

wn

= m

 …

 

:  

 

σvn

σv1

R

w1  

:  

wn

= m

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Z

 w1

 c11  

 c12 …

 :  

 c1,u

=

 w2

 c21  

 c22

 :  

 c2,u

 wn

 cv1  

 cv2

 :  

 cv,u

Linear Secret-Sharing:
Switching Schemes

Party i picks ith column

 

:  

 

σ1n

σ11  

:  

 

σ2n

σ21

w1 … wn R = m

 …

Locally each party j reconstructs using scheme W:  
zj ← W.Recon (σ1j,…,σnj)

Z

 w1

 c11  

 c12 …

 :  

 c1,u’

=

 w2

 c21  

 c22

 :  

 c2,u’

 wn

 cv1  

 cv2

 :  

 cv,u’

Linear Secret-Sharing:
Switching Schemes

 

:  

 

σ1n

σ11  

:  

 

σvn

σv1 

:  

 

σ2n

σ21

Party j computes jth row

R R
=

 

:  

 

zn

z1

 m

r1  

r2

:  

ru’

w1 … wn R = m

Switching Schemes
Can move from any linear secret-sharing scheme W to any
other linear secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Locally each party j reconstructs using scheme W:  
zj ← W.Recon (σ1j,…,σnj)

Claim: (z1, … , zn) is a valid Z-sharing of m ✓

Claim: If a party-set T⊆[n] is not allowed to learn the secret by
both W and Z, then T learns nothing about m from this process

Exercise

More General Access
Structures

(n,t)-secret-sharing allowed any t (or more) parties to
reconstruct the secret

i.e., “access structure” A = {S: |S| ≥ t }, is the  

set of all subsets of parties who can  
reconstruct the secret

In general access structure could be any monotonic
set of subsets

Shamir’s secret-sharing solves threshold secret-sharing.
How about the others?

If S*∈A, then for all

S⊇S*, S∈A.

More General Access
Structures

Idea: For arbitrary monotonic access structure A, there is a

“basis” B of minimal sets in A. For each S in B generate an  

(|S|,|S|) sharing, and distribute them to the members of S.

Works, but very “inefficient”

How big is B? (Say when A is a threshold access structure)

Total share complexity = ∑S∈B |S| field elements. (Compare

with Shamir’s scheme: n field elements in all.)

More efficient schemes known for large classes of access
structures

|B| = (n choose t)

t⋅(n choose t)

More General Access
Structures

A simple generalization of
threshold access structures

A threshold tree to specify the
access structure

Can realize by recursively
threshold secret-sharing the
shares

Note: linear secret-sharing

(2,3)

(2,3)

(1,3) (2,2)

Msg

Shares

Shares
of shares

Fact: Access structures that admit linear secret-sharing are those
which can be specified using “monotone span programs”

Efficiency
Main measure: size of the shares (say, total of all shares)

Shamir’s: each share is as as big as the secret (a single field
element)

Naïve scheme for arbitrary monotonic access structure: if a party
is in N sets in B, N basic shares

N can be exponential in n (as B can have exponentially many sets)

Share size must be at least as big as the secret: “last share” in a
minimal authorized set should contain all the information about the
secret

Ideal: if all shares are only this big (e.g. Shamir’s scheme)

Not all access structures have ideal schemes

Non-linear schemes can be more efficient than linear schemes

