Advanced Tools from
Modern Cryptography

Lecture 3
Secret-Sharing (ctd.)

Secret-Sharing

@ Last time
@ (n,1) secret-sharing
@ (n,n) via additive secret-sharing
@ Shamir secret-sharing for general (n,t)

@ Shamir secref-sharing is a linear secret-sharing scheme

Shamir Secret-Sharing

@ Share(m): Pick a random degree t-1 polynomial f(X) = Ziefo.+-13 CiX,
such that f(0)=m (i.e., co = m). Shares are s; = f(ai), where a; are
distinct and non-zero.

Ci S2
C2 o
B\
Ct-1

Sn

a Reconstruct(si,...,si;): Lagrange interpolation to find m=co

@ i.e., solve for (m c; ... c+.1) from t rows of the above system

Linear Secref-Sharing

» Share(M): For some fixed nxt matrix W, let s = W.c where
Co = M and other 1-1 coordinates are random

Shares are “sub-vectors” of s.

- .ﬂ'

- m S1
o S2

o
2 =

S

e

o1

0]]

SN

Linear Secref-Sharing

» Reconstruct(oi,...,oi): pool together available coordinates T<[N].
Can reconstruct if there are enough equations to solve for m.

L R R T N m LSRRI s
A Ci S2
Rt s.t. support only on Ca X
coordinates TC[N] and
Rr-W =[10 .. 0] PSR 2
- Cu
SN

@ Claim: VT C [n], st either fully determines m, or is independent of m

@ If T C [N]s.t. [1 0 .. O] not in the row span of Wr, for any y€F,

we can add an equation m=y to the system Wr-c = st. Number
of solutions for c in this system is independent of y.

Linear Secret-Sharing:
Computing on Shares

@ Suppose two secrets m; and m; shared using the same secret-
sharing scheme

m ma
Cin Ca

011 o021

Ci2 Ca22

Clu C2,u

Oln O2n

@ Then for any p,q € F, shares of p-m; + g-m2 can be computed locally
by each party i as oi = p-oii + q-02i

Linear Secret-Sharing:
Computing on Shares

@ More generally, can compute shares of any linear transformation

m ma My
Cin Ca Cvi

Ci2 C22 Cv2

}u'l:' b ?b“.? ¥ ?}.C:' ¥
Cu C2u Cvu

011 o021

Oln O2n

Ovl

Ovn

/

Each row
computed locally
by a party

Lo

Lo

Switching Schemes

Can move from any linear secret-sharing scheme W to any
other linear secret-sharing scheme Z “securely”

Given shares (w1, ..., Wn) < W.Share(m)
Share each w; using scheme Z: (oiy,...,cin)<— Z.Share(w;)

Locally each party j reconstructs using scheme W:
zj <— W.Recon (o, ...,0nj)

Claim: (zy, ... , zn) is a valid Z-sharing of m

Linear Secret-Sharing:
Switching Schemes

& Given shares (Wi, ..., Wn) < W.Share(m)

'm

. w1
G
cz R
Whn

@ Recall reconstruction in W:

w1

” - v..:"'"“l, .;;
L.‘-“-}{.M"\ = m

Whn

Linear Secret-Sharing:
Switching Schemes

@ Share each w; using scheme Z: (oi,...,0in)<— Z.Share(w;)

Wi W2 Whn

| | o o11 O21 Ovl
Cih Ca1 N Y|
C12 C22 Cv2 =
,‘ : .
R bt R
U
CLu C2u Cvu
Oln O2n Ovn

A

Party i picks ith column

w1 oo Wn I-‘

n
3

T R S

Linear Secret-Sharing:
Switching Schemes

@ Locally each party j reconstructs using scheme W:
zj — W.Recon (o1j,...,0nj)

O11 CG21 Oyl Z)
* S
::o.o ' >
'

Zn

Party j computes jth row

Lo

Lo

Switching Schemes

Can move from any linear secret-sharing scheme W to any
other linear secret-sharing scheme Z “securely”

Given shares (w1, ..., Wn) < W.Share(m)
Share each w; using scheme Z: (oiy,...,cin)<— Z.Share(w;)

Locally each party j reconstructs using scheme W:
zj <— W.Recon (o, ...,0nj)

Claim: (zy, ... , zn) is a valid Z-sharing of m

Claim: If a party-set TC[n] is not allowed to learn the secret by
both W and Z, then T learns nothing about m from this process

@ EXercise

More General Access

Structures

@ (n,t)-secret-sharing allowed any t (or more) parties to

reconstruct the secret

@ i.e., "access structure” A = {S: |S| 2 t }, is the

set of all subsets of parties who can
reconstruct the secret

If S*c‘A, then for all
$2S* scA.

\ V ;
@ In general access structure could be any monotonic

set of subsets

@ Shamirs secret-sharing solves threshold secret-sharing.

How about the others?

More General Access
Structures

a Idea: For arbitrary monotonic access structure A, there is a

"basis” B of minimal sets in A. For each S in ‘B generate an
(Isl,ISl) sharing, and distribute them to the members of S.

a» Works, but very “inefficient” Bl = (n choose 1)

V
a» How big is B? (Say when A is a threshold access structure)

a Total share complexity = 3scz S| field elements. (Compare

with Shamirs scheme: n field elements in all.) Tf.(n choose 1-)]

@ More efficient schemes known for large classes of access
structures

More General Access
Structures ,

@ A simple generalization of -

threshold access structures
Shares

@ A threshold tree to specify the
access structure

@ Can realize by recursively - Shal’es
threshold secret-sharing the s ‘\ °‘c NS

shares

@ Note: linear secret-sharing

@ Fact: Access structures that admit linear secret-sharing are those
which can be specified using “monotone span programs”

Efficiency

a» Main measure: size of the shares (say, total of all shares)

@ Shamirs: each share is as as big as the secret (a single field
element)

@ Nalve scheme for arbitrary monotonic access structure: if a party
is in N sets in ‘B, N basic shares

a N can be exponential in n (as B can have exponentially many sets)

@ Share size must be at least as big as the secret: “last share” in a
minimal authorized set should contain all the information about the

secret
@ Ideal: if all shares are only this big (e.g. Shamirs scheme)
@ Not all access structures have ideal schemes

a Non-linear schemes can be more efficient than linear schemes

