Advanced Tools from
Modern Cryptography

Lecture 7
Secure 2-Party Computation:
Yaos Garbled Circuit

Q%

-
L

-
@

D

<

)

\PC without Honest-Majority

Plan (Still sticking with passive corruption):

Two protocols, that are secure computationally

@ The “passive-GMW" protocol for any number of parties

@ A 2-party protocol using Yaos Garbled Circuits

@ Both rely on a computational primitive called Oblivious Transfer

Last time: OT and Passive-GMW

@ (Not exactly the version from the GMW'87 paper.)
Today: 2-Party protocol using Yaos Garbled Circuits

2-Party SFE

@ Secure Function Evaluation (SFE) IDEAL:

Q. v @

@ Trusted party takes (X;Y). Outputs E : G y a
g(X:Y) to Alice, f(X:;Y) to Bob g(X;y) f(X:Y)

@ Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither
party knows r (beyond what is revealed by output)

@ OT is an instance of a (deterministic) 2-party SFE

@ g(xo,x1;b) = none; f(xo,x1;b) = X

@ Single-Output SFE: only one party gets any output

2-Party SFE

@ Can reduce general SFE (even randomized) to a single-output
deterministic SFE

a F'(X, M, ri; Y, r2) = (g(X: Y; nerz)eM, f(X; Y; nerz)).
Compute f'(X, M, ri; Y, r2) with random M, ry, r2

@ Bob sends g(X, Y; r®rz)®M to Alice
@ Passive secure

@ For active security too: f' authenticates (one-time MAC) as
well as encrypts g(X; Y; ri®rz) using keys input by Alice

@ Generalizes to more than 2 parties too [Exercise]

@ Yao: Reduces single-output deterministic 2-party SFE to OT

@ Single round of interaction, but with only computational
security (cf. GMW: information-theoretic, but many rounds)

N
RS

< Oblivious Transfer

® Pick one out of two,

without revealing
which

@ Intuitive property:
transfer partial
information
“obliviously”

tell you
which

0

Ei A0 AT a s "
. - b’

@

2

D

@

@

25
l."-.l

Nalve 2PC from OT

Say Alices input x, Bobs input y, and only Bob should learn f(x,y)

Alice (who knows x, but not y) prepares a table for f(x,-) with
D = 2l entries (one for each V)

Bob uses y to decide which entry in the table fo pick up using
1-out-of-D OT (without learning the other entries)

Bob learns only f(x,y) (in addition to y). Alice learns nothing

beyond x. Secure protocol for f using
access to ideal OT
OT captures the essence of MPC: y

Secure computation of any function f can be reduced to OT
Problem: D is exponentially large in |yl

@ Plan: somehow exploit efficient computation (e.g., circuit) of f

@ Directed acyclic graph

@

D

D

@

Nodes: multiplication and addition
gates, constant gates, inpufts,
output(s)

Edges: wires carrying values from F

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according fo a
topologically sorted order of gates
they come out of

2-Party MPC for
General Circuits

@ "General”: evaluate any arbitrary (boolean) circuit

@ One-sided output: both parties give inputs, one
party gets outputs

@ Either party maybe corrupted passively
Consider evaluating OR (single gate circuit)

» Alice holds x=a, Bob has y=b; Bob should get OR(x,y)

6

5
It.‘

A Physical Protocol

Alice prepares 4 boxes Bxy corresponding to 4 2

possible input scenarios, and 4 padlocks/keys Ky-o,

Kx=1, Ky=o and Ky:l

Inside Bxy-ab She places the bit OR(a,b) and locks it g;])
with two padlocks Kx-a and Ky, (need to open both

to open the box) L
10
She un-labels the four boxes and sends them in 6&5 &5

random order to Bob. Also sends the key Ky-q T *
(labeled only as Ky). go—;Cg

@ So far Bob gets no information A
Bob “obliviously picks up” K., and tries the two —>
keys Kx,Ky on the four boxes. For one box both o1 —>
locks open and he gets the output. 13958

A Physical Protocol

@ Secure?

@ For curious Alice: only influence from Bob is when
he picks up his key K-,

@ But this is done “obliviously”, so she learns
nothing

@ For curious Bob: What he sees is predictable (i.e.,
simulatable), given the final outcome

@ What Bob sees: His key opens K, in two boxes,
Alices opens Ky in two boxes; only one random
box fully opens. It has the outcome.

@ Note when y=1, cases x=0 and x=1 appear same

Larger Circuits

@ lIdea: For each gate in the circuit Alice will
prepare locked boxes, but will use it to keep
keys for the next gate

» For each wire w in the circuit (i.e., input wires,
or output of a gate) pick 2 keys Kw-0 and Ku-:

Larger Circuits

2 Idea: For each gate in the circuit Alice will
prepare locked boxes, but will use it to keep
keys for the next gate

» For each wire w in the circuit (i.e., input wires,
or output of a gate) pick 2 keys Kw-0 and Ku-:

» For each gate G with input wires (u,v) and output
wire w, prepare 4 boxes Bu and place Kuw-g(a,) inside
bOX Buv:ab. LOCk Buv:qb Wlfh keys Ku:a Clnd szb

@ Give to Bob: Boxes for each gate, one key for each of
Alices input wires

» Obliviously: one key for each of Bobs input wires

#» Boxes for output gates have values instead of keys

Larger Circuits

% Evaluation: Bob gets one key for each input wire of a
gate, opens one box for the gate, gets one key for the
output wire, and proceeds

% Gets output from a box for the output gate

I
I
@ Security similar fo before % %

@ Curious Alice sees nothing

@ Bob can simulate his view given final output: Bob could
prepare boxes and keys (stuffing unopenable boxes
arbitrarily); for an output gate, place the output bit in
the box that opens

i

—
—>
—

)(
S8 ®
®

—> b

That was too physical!

Garbled Circuit

Will formalise
next time

#» Yaos Garbled circuit: boxes/keys replaced by Symmetric Key\/
Encryption (specifically, using a Pseudorandom Function or PRF)

» Enck(m) = PRFk(index) ® m, where index is a wire index
(distinct for different wires fanning-out of the same gate)

» Double lock: Enckx(Encky(m))

@ PRF in practice: a block-cipher, like AES

@ Uses Oblivious Transfer for strings: For passive security, can just

repeat bit-OT several times to transfer longer keys

@ Security? Need to first define security when computational

primitives are used! (Next time!)

Garbled Circuit

% One minor issue when using encryption instead of locks

@ Given four doubly locked boxes (in random order) and two
keys, we simply tried opening all locks until one box fully
opened

% With encryption, cannot quite fell if a box opened or not!
Outcome of decryption looks random in either case.

@ Simple solution: encode the keys so that wrong decryption
does not result in outputs that look like valid encoding of keys

@ Better solution: attach an additional “colour” label (random,
distinct) to each key. Each locked box marked with the colours
of the two keys needed to unlock it.

@ A single bit suffices as colour, since it is enough fo
distinguish the two keys of a wire

