
Advanced Tools from  

 Modern Cryptography

Lecture 8

Computational Security:

Indistinguishability, Simulation

Security Definitions
So far: Perfect secrecy

Achieved in Shamir secret-sharing, passive BGW and passive
GMW (given a trusted party for OT)

But for 2PC using Yao’s Garbled circuit (even given a trusted party
for OT) security only against computationally bounded adversary

We haven’t defined such security yet!

Plan

Computational Indistinguishability

Simulation-based security

Because, the obvious
definition obtained by

replacing perfect secrecy
by computational secrecy

turns out to be weak

Indistinguishability

Distribution ensembles {Ak}, {Bk} computationally indistinguishable
if ∀ Probabilistic Polynomial Time tests T, ∃ negligible ν(k) s.t.  
 | Prx←Ak[T(x)=1] - Prx←Bk[T(x)=1] | ≤ ν(k)

Ak ≈ Bk

≈

∀ PPTT T

x ← Ak x ← Bk

Re
ca
ll

Example: Pseudorandomness
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

Gk: {0,1}k→{0,1}n(k) where n(k) > k

Security definition: {Gk(x)}x←{0,1}k ≈ Un(k)

REAL ≈ IDEAL

T T

x ← {0,1}k

z ← Gk(x)
z ← {0,1}n

∀ PPT

IDEALREAL

{Gk(x)}x←{0,1}k cannot be
statistically indistinguishable

from Un(k) unless n(k) ≤ k (Why?)

Pseudorandom Function (PRF)
A compact representation of an exponentially long (pseudorandom)
string

Allows “random-access” (instead of just sequential access)

A function F(s;i) outputs the ith block of the pseudorandom
string corresponding to seed s

Exponentially many blocks (i.e., large domain for i)

Pseudorandom Function

Need to define pseudorandomness for a function (not a string)

Idea: the view of an adversary arbitrarily interacting with the
function is indistinguishable from its view when interacting with
a random function

s ← {0,1}k

F(s,⋅)
Random function

R(⋅)

T T
∀ PPT

∀ PPT

REAL ≈ IDEAL IDEALREAL

F: {0,1}k×{0,1}m(k) →{0,1}n(k)

is a PRF if

Pseudorandom Function (PRF)

Security for MPC
Recall: For passive security, secrecy is all the matters

For a 2-party functionality f, with only Bob getting the output,
perfect secrecy against corrupt Bob:  
i.e., ∀ x, x’, y s.t., f(x,y) = f(x’,y), viewBob(x,y) = viewBob(x’,y)

In particular, if (y, f(x,y)) uniquely determines x (i.e., if
f(x’,y)=f(x,y) ⇒ x’=x), then OK for view to reveal x

In the computational setting, just replace = with ≈ ?

We should ask for more!

E.g., f is a decryption algorithm, with key x and ciphertext y

Often, a (long enough) ciphertext and message uniquely
determines the key

But not OK to reveal the key to Bob!

Because,  
uniquely determines

≠ reveals!

Makes sense only for
the view, not f

Security for MPC

Compare the protocol execution with an “ideal” execution involving
an incorruptible trusted party

Trusted party collects all inputs, carries out all computation and
delivers the outputs (over private channels)

Ideal is the best we can hope for

If anything that could “go wrong” with the protocol execution
could happen with the ideal execution too, then it is not the
protocol’s fault

Applies to active,as well as passive corruption

Applies to computational as well as information-theoretic
security

Simulation-Based Security

Protocol is
secure (and
correct) if:

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

proto proto

Env
REAL

i’face i’face

Env

IDEAL

FF

Secure (and
correct) if:

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

proto proto

Env
REAL

i’face i’face

Env

IDEAL

FF

Functionality

Computational:
all PPT

Protocol may also use (simpler)
functionalities, like OT

Simulation-Based Security

Variants of Security
Same definitional framework can be used to define various
levels of security!

Passive adversary: corrupt parties stick to the protocol

Will require corrupt parties in the ideal world also to use
the correct inputs/outputs

Universally Composable security: Active adversary interacting
with the environment arbitrarily

Standalone security: environment is not “live.” Interacts with
the adversary before and after (but not during) the protocol

Super-PPT simulation: meaningful when the “security” of
ideal world is information-theoretic

Aside: Non-simulation-based security definitions for MPC are
also useful for intermediate tools, but often too subtle for final
applications

Trust Issues Considered

Protocol may leak a party’s secrets

Clearly an issue -- even for passive corruption

Protocol may give adversary illegitimate influence on the
outcome

Say in poker, if adversary can influence hands dealt

An issue even when no secrecy requirements

e.g., Exchanging inputs

Simulation-based security covers these concerns

Because the ideal trusted party would allow neither

Example: Coin-Tossing

Functionality Fcoin samples a uniform random bit and sends it to
all parties

Security against passive corruption is trivial (Why?)

Fact: Impossible to (even stand-alone) securely realise against
computationally unbounded active adversaries

Protocol for stand-alone security against PPT adversaries using
commitment

If given ideal commitment functionality, information-theoretic
security

IDEAL World

30 Day Free Trial

We Predict

STOCKS!!

Commitment

Commit now,
reveal later

Intuitive properties:
hiding and binding FCOM

up

up

“COMMIT”“REVEAL” up

commit
COMMIT: F

m
m

reveal mREVEAL:
Fm

Really?

Next Day

A (fully) secure 2-party protocol for coin-tossing, given an ideal
commitment functionality Fcom

Alice sends a bit a to Fcom. (Bob gets “committed” from Fcom)

Bob sends a bit b to Alice

Alice sends “open” to Fcom. (Bob gets a from Fcom)

Both output c=a⊕b

Simulator:

Will get a bit c from Fcoin. Needs to simulate the corrupt
party’s view in the protocol, including the interaction with Fcom

If Alice corrupt: Get a from Alice. Send b = a⊕c.

If Bob corrupt: Send “committed”. Get b. Send a = b⊕c.

Perfect simulation: Environment + Adversary’s view is identically
distributed in REAL and IDEAL (verify!), and hence so is
Environment’s output

Example: Coin-Tossing

