Advanced Tools from
Modern Cryptography

Lecture 12
MPC: UC-secure OT

UC-Secure OT

@ UC-secure OT is impossible (even against PPT adversaries) in the
"plain model” (i.e., without the help of another functionality)

@ But possible from simple setups
@ e.g., noisy channel (without computational assumptions)
@ e.g., random coins (needs computational assumptions)
@ Today: from Common random string

@ Like random coins, but reusable across multiple sessions

An OT Protocol

(passive corruption)
®Using (a special) encryption

®PKE in which one can
sample a public-key
without knowing secret-key

&1 inscrutable to a

0 = (SKb, PKp) +— KeyGen
passive corrupt receiver

Sample PKi.»

®Sender learns nothing
about b

PKo, PK;
<

xp=Dec(cp; SKp,
Co,C (s%

g '
9 4
«—
—
—
—— \p*

Towards Active Security

@ Should not let the receiver pick PKo and PK; independently!
@ (PKo,PK;) tied together, in which at most one can be decrypted
a (PKo,PK1,SK) < Gen(b) s.t. check(PKo,PK;) = True
@ SK decrypts Enc(m;PKp), but not Enc(m;PKis). (PKo,PK:) hides b.

a But a simulator should be able to extract b from (PKo,PK:) (if
Receiver corrupt) and m from Enc(m;PKi) (if Sender corrupt)

@ Scheme will use a common random string Q (fo be
generated by a trusted party)

@ During simulation Simulator can generate (Q,T) where T is a
Trapdoor that can be used for extraction

Towards Active Security

& Need: Gen(Q,b) and check(PKo,PK;,Q) such that
a If (PKo,PK1,SK)<—Gen(Q,b): SK decrypts Enc(m;PKp), (PKo,PK1) hides b

a If check(PKo,PKi,Q) = True: Enc(m;PK.) hides m for some c (even if
(PKo,PK1) maliciously generated). Simulator should have trapdoors.

@ Suppose two different types of setups possible such that:
Type 1 setup: For honest (PKo,PKi), b statistically hidden.
Trapdoor decrypts both Enc(m;PKo) and Enc(m;PK;).
Type 2 setup: Honest Enc(m;PK.) statistically hides m for some ¢
Trapdoor extracts such a ¢ from any (PKo,PK)). /\
Type 1 setup = Type 2 setup (computationally) |

@ (PKo,PK1) computationally hides b in Type 2 setup too.
Enc(m;PK.) computationally hides m for some c in Type 1 setup too.

PK. said fo
be “lossy”

@ Simulation when Sender corrupt: Use Type 1 setup
@ Simulation when Receiver corrupt: Use Type 2 setup

Dual-Mode Encryption (DME)

@ Algorithms: Setuppec, Setupext, Gen, Check, Enc, Dec
& Q from Setuppec and Setupext indistinguishable

a If (PKo,PKy,SK) < Gen(Q,b), then Check(PKo,PKi,Q)=True, and
Dec(Enc(x,PKp), SK) = x
@ Two more algorithms required to exist by security property:
FindLossy and TrapKeyGen

@ Given trapdoor from Setupext, and a pair PKo, PK; which passes
the Check, FindLossy can find a lossy PK out of the two

@ Given trapdoor from Setuppec, TrapKeyGen can generate PKo, PK;
which will pass the Check, along with decryption keys SKo, SK;

OT from DME

® Protocol could use either
Setuppec Or Setupext

(PKo,PK1,SK) +
Gen(Q,b)

If Check(PKo,PK1,Q):
Co = EnC(Xo,PK())
c1 = Enc(x1,PK7)

® — @

A D

xp=Dec(cp,; SK)

N s~ I o S ~= =l D=~

OT from DME

®Simulation for corrupt sender:

0. (Q,T) « Setuppec, send Q.
1. Send (PKo,PK1,5K0,5K1) < TrapKeyGen(T)

2. On getting (co,c1), extract (xo,x1) using (5Ko,5K1) and send to For

® For corrupt receiver: £

—

0. (Q,T) « Setupex, send Q.

co = Enc(x,PKo)
c1 = Enc(x1,PK7)

1. On getting (PKo,PK1), send b:=1-FindLossy(PKo,PK1,T) to For, get xp

Dual-Mode Encryption (DME)

@ High-level idea
@ PKE s.t. a (hidden) subset of the PK-space is “lossy”
@ Q = PK. Require that PKo-PK; = PK
@ Receiver can pick only one PK,. Other gets determined by Q
@ But maybe both can still be non-lossy!
@ Fix: Non-lossy subset is a sub-group, and Q = PK, a lossy key

@ PKo'PK; = PK = not both in the non-lossy subgroup!

@ Coming up: A primitive called SPH which allows a DME construction
as above

» And a construction of SPH from “Decisional Diffie-Hellman”
assumption

Smooth PrOJecflve Hash (SPH)
Encode > Hash

@ . Project

IFpeH lIFpeH

B = B* B random

a Public parameters 0 used by all algorithms. Trapdoor <
@ Encode: M — M* is a group homomorphism
@ H C M group s.t. given only 0, distributions {u*}, - = W} - ww

» But using 1, can perfectly distinguish the two distributions

Q

,:-l)

.~ DME from SPH _
\n Encode >m/ v
25

IfueH | IfpeH
B = B* B random

S

Project

SPH gives a PKE scheme, with Hash as Enc, Hash* as Dec
Setup: Sample SPH params (6,7). Let p<—M. Let Q=(u*0), T=(u,1)
@ Sefuppec: t € H. Setupext: p € H.

If u* ¢ H* given (po*m™*) s.t. po*-w* = p* at least one of po,im ¢
H. Can find using =. (FindLossy) TThis is Check(PKo,PK:)]

If uW*e H* using 1, can find (po,m1) s.t. po™ - w™ = p* and both po,u €
H (TrapKeyGen)

@

D

D

@

D

Groups

A set G (for us finite, unless otherwise specified) and a “"group
operation” * that is associative, has an identity, is invertible, and
(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G
For any aeG, a6l = a*a*..*a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there
is one element g such that G = {q°, g!, g2, ... gl¢i-1}

a Prototype: Zn (additive group), with g=1.
Corresponds to arithmetic in the exponent.

D

D

,;ED

Decisional Diffie-Hellman
(DDH) Assumption

Assumption about a distribution of finite cyclic groups and
generators

(G, g, 9%, 97, gY)}(G,g)Gen; xylicll * UG, 9, G%, G, g")}(G.g)—Gen; xy,r<IiGl]
Note: Requires that it is hard fo find x from gx

Typically, G required to be a prime-order group. So arithmetic in
the exponent is in a field.

Formulation equivalent to DDH in prime-order groups:

a {(G, g, g% @b g g"“}Ggrabu = UG, g, g% g° g%, g")iG.g)abuv

@ If can distinguish the above, then can break DDH:
map (G, g, g%, g%, h) » (G, g, g% g%, g7 h)

SPH from DDH Assumption

Encode
=
@ < Project @
If ueH

B =B

If uegH " H % e

B random

@ SPH from DDH assumption on a prime order group G
@ (G, 9, g% g° g% g*iGgrabu = UG, g, 9% b, 9% g*')i(Gg)abuy

@ 0=(Ggg%g") t = (ab)
= (s,t) and 71* = gas+b’r.
= (u,v) and p* = (goy, gb¥). u € H iff u=v.
Hash(p*n) = geus-govt and Hash*(p,n*) = glastbi)u

