Advanced Tools from Modern Cryptography

Lecture 12 MPC: UC-secure OT

UC-Secure OT

- UC-secure OT is impossible (even against PPT adversaries) in the "plain model" (i.e., without the help of another functionality)
- But possible from simple setups
 - e.g., noisy channel (without computational assumptions)
 - e.g., random coins (needs computational assumptions)
 - Today: from Common random string
 - Like random coins, but reusable across multiple sessions

An OT Protocol (passive corruption) Using (a special) encryption PKE in which one can sample a public-key without knowing secret-key $\bigcirc c_{1-b}$ inscrutable to a $(SK_b, PK_b) \leftarrow KeyGen$ passive corrupt receiver Sample PK_{1-b} Sender learns nothing about b $c_0 = Enc(x_0, PK_0)$ $\mathbf{C}_1 = \mathbf{Enc}(\mathbf{X}_1, \mathbf{PK}_1)$ **PK**₀, **PK**₁ $x_b = Dec(c_b; SK_b)$ Co,C1 X0,X1

Towards Active Security

- Should not let the receiver pick PK_0 and PK_1 independently!
- \odot (PK₀,PK₁) tied together, in which at most one can be decrypted
 - - SK decrypts $Enc(m;PK_b)$, but not $Enc(m;PK_{1-b})$. (PK₀,PK₁) hides b.
 - But a simulator should be able to extract b from (PK₀,PK₁) (if Receiver corrupt) and m from Enc(m;PK_{1-b}) (if Sender corrupt)
 - Scheme will use a <u>common random string</u> Q (to be generated by a trusted party)
 - During simulation Simulator can generate (Q,T) where T is a Trapdoor that can be used for extraction

Towards Active Security

• Need: Gen(Q,b) and $check(PK_0, PK_1, Q)$ such that If (PK₀, PK₁, SK)←Gen(Q,b): SK decrypts Enc(m; PK_b), (PK₀, PK₁) hides b • If $check(PK_0, PK_1, Q) = True: Enc(m; PK_c)$ hides m for some c (even if (PK_0, PK_1) maliciously generated). Simulator should have trapdoors. Suppose two different types of setups possible such that: Type 1 setup: For honest (PK_0, PK_1), b statistically hidden. Trapdoor decrypts both $Enc(m; PK_0)$ and $Enc(m; PK_1)$. Type 2 setup: Honest Enc(m;PK_c) statistically hides m for some c Trapdoor extracts such a c from any (PK_0, PK_1) . Type 1 setup \approx Type 2 setup (computationally) PK_c said to \odot (PK₀,PK₁) computationally hides b in Type 2 setup too. be "lossy" $Enc(m;PK_c)$ computationally hides m for some c in Type 1 setup too. Simulation when Sender corrupt: Use Type 1 setup Simulation when Receiver corrupt: Use Type 2 setup

Dual-Mode Encryption (DME)

Algorithms: Setup_{Dec}, Setup_{Ext}, Gen, Check, Enc, Dec

- Q from Setup_{Dec} and Setup_{Ext} indistinguishable
- If (PK₀,PK₁,SK) ← Gen(Q,b), then Check(PK₀,PK₁,Q)=True, and Dec(Enc(x,PK_b), SK) = x

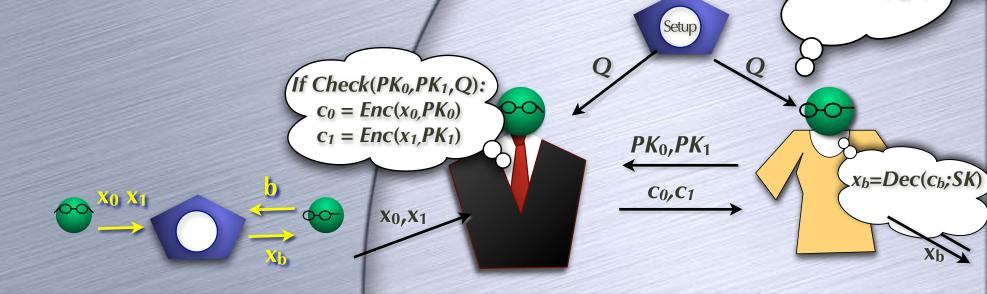
 Two more algorithms required to exist by security property: FindLossy and TrapKeyGen

- Given trapdoor from Setup_{Ext}, and a pair PK₀, PK₁ which passes the Check, FindLossy can find a lossy PK out of the two
- Given trapdoor from Setup_{Dec}, TrapKeyGen can generate PK₀, PK₁ which will pass the Check, along with decryption keys SK₀, SK₁

OT from DME

 Protocol could use either Setup_{Dec} or Setup_{Ext}

 $(PK_0, PK_1, SK) \leftarrow Gen(Q, b)$



OT from DME

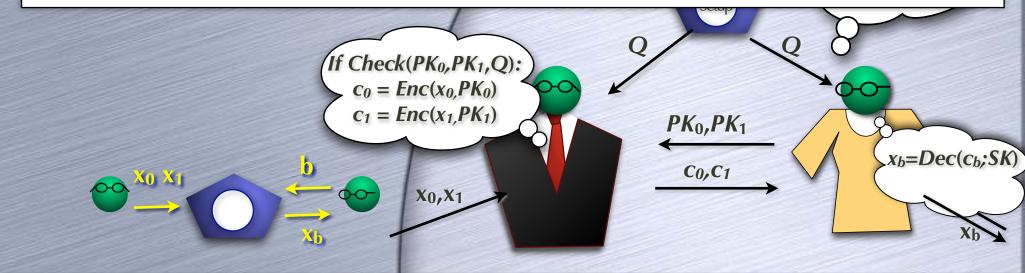
Simulation for corrupt sender:

- 0. $(Q,T) \leftarrow$ Setup_{Dec}, send Q.
- 1. Send $(PK_0, PK_1, SK_0, SK_1) \leftarrow \text{TrapKeyGen}(T)$
- 2. On getting (c_0, c_1) , extract (x_0, x_1) using (SK_0, SK_1) and send to F_{OT}

• For corrupt receiver:

0. $(Q,T) \leftarrow \text{Setup}_{\text{Ext}}$, send Q.

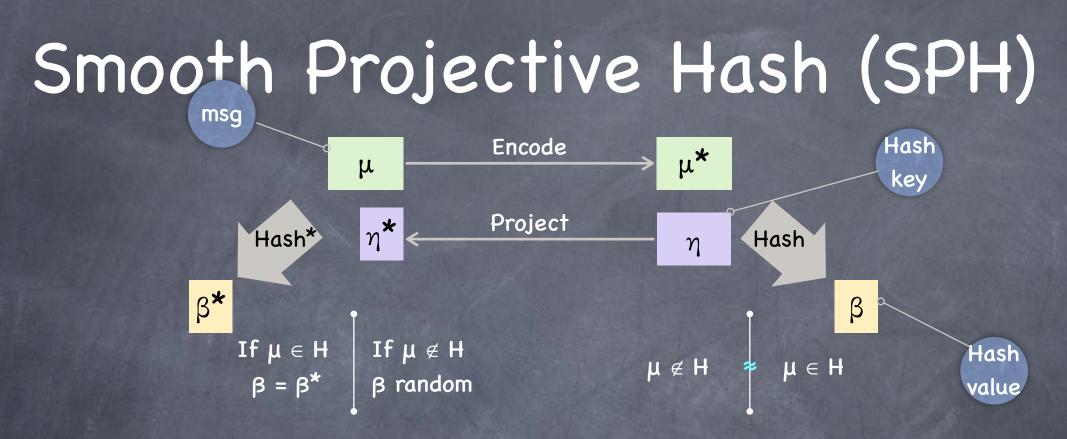
- 1. On getting (PK_0, PK_1) , send b := 1-FindLossy (PK_0, PK_1, T) to F_{OT} , get x_b
- 2. Send $c_b = \text{Enc}(x_b, PK_b)$ and $c_{1-b} = \text{Enc}(0, PK_{1-b})$



Dual-Mode Encryption (DME)

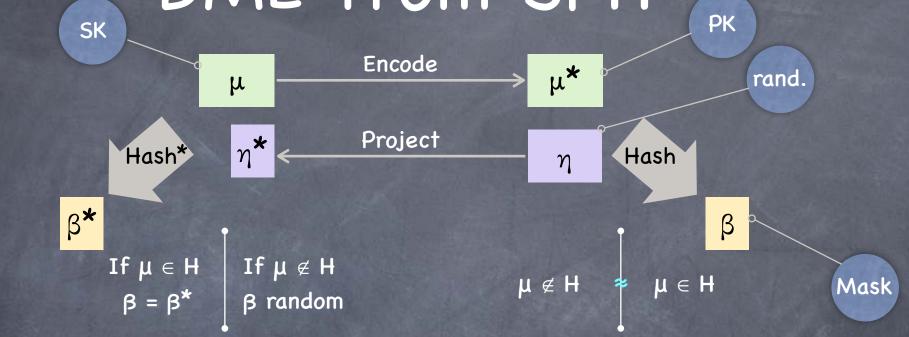
High-level idea

- PKE s.t. a (hidden) subset of the PK-space is "lossy"
- \odot Q = PK. Require that PK₀·PK₁ = PK
 - ${\ensuremath{\circ}}$ Receiver can pick only one $\mathsf{PK}_b.$ Other gets determined by Q
 - But maybe both can still be non-lossy!
- Fix: Non-lossy subset is a sub-group, and Q = PK, a lossy key
 - $PK_0 \cdot PK_1 = PK \Rightarrow$ not both in the non-lossy subgroup!
- Coming up: A primitive called SPH which allows a DME construction as above
 - And a construction of SPH from "Decisional Diffie-Hellman" assumption



Public parameters θ used by all algorithms. Trapdoor τ
Encode: M → M* is a group homomorphism
H ⊆ M group s.t. given only θ, distributions {μ*}_{μ ← H} ≈ {μ*}_{μ ← M\H}
But using τ, can perfectly distinguish the two distributions

DME from SPH



SPH gives a PKE scheme, with Hash as Enc, Hash* as Dec
Setup: Sample SPH params (θ,τ). Let μ←M. Let Q=(μ*,θ), T=(μ,τ)
Setup_{Dec}: μ ∈ H. Setup_{Ext}: μ ∉ H.
If μ* ∉ H*, given (μ₀*,μ₁*) s.t. μ₀* · μ₁* = μ*, at least one of μ₀,μ₁ ∉ H. Can find using τ. (FindLossy)
If μ* ∈ H*, using μ, can find (μ₀,μ₁) s.t. μ₀* · μ₁* = μ* and both μ₀,μ₁ ∈ H (TrapKeyGen)

A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative

Examples: Z = (integers, +) (this is an infinite group),
 Z_N = (integers modulo N, + mod N),
 Gⁿ = (Cartesian product of a group G, coordinate-wise operation)
 Order of a group G: |G| = number of elements in G

g^{N-1} g⁰

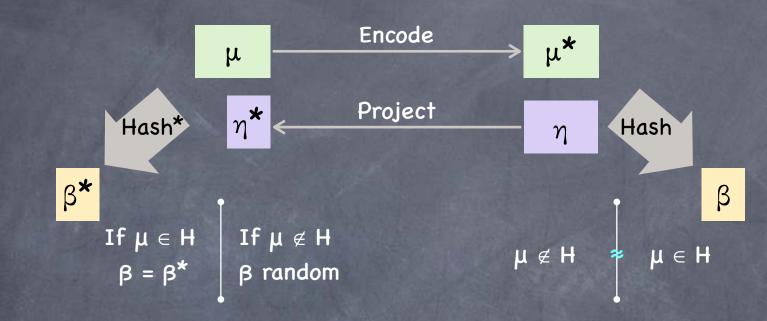
- For any $a \in G$, $a^{|G|} = a * a * ... * a$ (|G| times) = identity
- Finite Cyclic group (in multiplicative notation): there is one element g such that G = {g⁰, g¹, g², ... g^{|G|-1}}

Prototype: \mathbb{Z}_N (additive group), with g=1.
Corresponds to arithmetic in the exponent.

Decisional Diffie-Hellman (DDH) Assumption

- Assumption about a distribution of finite cyclic groups and generators
- $(G, g, g^{x}, g^{y}, g^{xy}) (G,g) \leftarrow Gen; x,y \leftarrow [|G|] \approx \{(G, g, g^{x}, g^{y}, g^{r})\} (G,g) \leftarrow Gen; x,y,r \leftarrow [|G|]$
- Note: Requires that it is hard to find x from g[×]
- Typically, G required to be a prime-order group. So arithmetic in the exponent is in a field.
- Formulation equivalent to DDH in prime-order groups:
 - $(G, g, g^{a}, g^{b}, g^{au}, g^{bu})$ $(G,g), a, b, u \approx \{ (G, g, g^{a}, g^{b}, g^{au}, g^{bv}) \}$ $(G,g), a, b, u, v \in \{ (G, g, g^{a}, g^{b}, g^{au}, g^{bv}) \}$
 - If can distinguish the above, then can break DDH:
 map (G, g, g^x, g^y, h) → (G, g, g^a, g^x, g^{y.a}, h)

SPH from DDH Assumption



SPH from DDH assumption on a prime order group G

 $\otimes \{ (G, g, g^{a}, g^{b}, g^{au}, g^{bu}) \}_{(G,g),a,b,u} \approx \{ (G, g, g^{a}, g^{b}, g^{au}, g^{bv}) \}_{(G,g),a,b,u,v}$