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MPC: UC-secure OT



UC-Secure OT

UC-secure OT is impossible (even against PPT adversaries) in the 
“plain model” (i.e., without the help of another functionality)


But possible from simple setups


e.g., noisy channel (without computational assumptions)


e.g., random coins (needs computational assumptions)


Today: from Common random string


Like random coins, but reusable across multiple sessions



Using (a special) encryption 

PKE in which one can 
sample a public-key 
without knowing secret-key 

c1-b inscrutable to a  
passive corrupt receiver 

Sender learns nothing  
about b

An OT Protocol 
(passive corruption)
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Towards Active Security
Should not let the receiver pick PK0 and PK1 independently!


(PK0,PK1) tied together, in which at most one can be decrypted


(PK0,PK1,SK) ← Gen(b) s.t.  check(PK0,PK1) = True


SK decrypts Enc(m;PKb), but not Enc(m;PK1-b). (PK0,PK1) hides b.


But a simulator should be able to extract b from (PK0,PK1) (if 
Receiver corrupt) and m from Enc(m;PK1-b) (if Sender corrupt)


Scheme will use a common random string Q (to be 
generated by a trusted party)


During simulation Simulator can generate (Q,T) where T is a 
Trapdoor that can be used for extraction



Towards Active Security
Need:  Gen(Q,b) and check(PK0,PK1,Q) such that


If (PK0,PK1,SK)←Gen(Q,b): SK decrypts Enc(m;PKb), (PK0,PK1) hides b.

If check(PK0,PK1,Q) = True: Enc(m;PKc) hides m for some c (even if 
(PK0,PK1) maliciously generated). Simulator should have trapdoors.


Suppose two different types of setups possible such that:  
Type 1 setup: For honest (PK0,PK1), b statistically hidden.  
                 Trapdoor decrypts both Enc(m;PK0) and Enc(m;PK1).  
Type 2 setup: Honest Enc(m;PKc) statistically hides m for some c 
                 Trapdoor extracts such a c from any (PK0,PK1).  
Type 1 setup ≈ Type 2 setup  (computationally)


(PK0,PK1) computationally hides b in Type 2 setup too.  
Enc(m;PKc) computationally hides m for some c in Type 1 setup too.


Simulation when Sender corrupt: Use Type 1 setup


Simulation when Receiver corrupt: Use Type 2 setup

PKc said to 
be “lossy”



Dual-Mode Encryption (DME)

Algorithms: SetupDec, SetupExt, Gen, Check, Enc, Dec


Q from SetupDec and SetupExt indistinguishable


If (PK0,PK1,SK) ← Gen(Q,b), then Check(PK0,PK1,Q)=True, and  
Dec(Enc(x,PKb), SK) = x


Two more algorithms required to exist by security property:  
FindLossy and TrapKeyGen


Given trapdoor from SetupExt, and a pair PK0, PK1 which passes 
the Check, FindLossy can find a lossy PK out of the two


Given trapdoor from SetupDec, TrapKeyGen can generate PK0, PK1 
which will pass the Check, along with decryption keys SK0, SK1 



Protocol could use either 
SetupDec or SetupExt 

OT from DME
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OT from DME
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Simulation for corrupt sender:  
 

 

For corrupt receiver:  

0. (Q,T) ← SetupDec, send Q. 

1. Send (PK0,PK1,SK0,SK1) ← TrapKeyGen(T)  
2. On getting (c0,c1), extract (x0,x1) using (SK0,SK1) and send to FOT

0. (Q,T) ← SetupExt, send Q. 

1. On getting (PK0,PK1), send b:=1-FindLossy(PK0,PK1,T) to FOT, get xb  

2. Send cb = Enc(xb, PKb) and c1-b = Enc(0, PK1-b)



Dual-Mode Encryption (DME)
High-level idea


PKE s.t. a (hidden) subset of the PK-space is “lossy”


Q = PK. Require that PK0⋅PK1 = PK


Receiver can pick only one PKb. Other gets determined by Q


But maybe both can still be non-lossy!


Fix: Non-lossy subset is a sub-group, and Q = PK, a lossy key


PK0⋅PK1 = PK ⇒ not both in the non-lossy subgroup!


Coming up: A primitive called SPH which allows a DME construction 
as above


And a construction of SPH from “Decisional Diffie-Hellman” 
assumption



Smooth Projective Hash (SPH)
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Public parameters θ used by all algorithms. Trapdoor τ 

Encode: M → M* is a group homomorphism


H ⊆ M group s.t. given only θ, distributions {μ*}μ ← H ≈ {μ*}μ ← M\H


But using τ, can perfectly distinguish the two distributions



DME from SPH
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SPH gives a PKE scheme, with Hash as Enc, Hash* as Dec


Setup: Sample SPH params (θ,τ). Let μ←M. Let Q=(μ*,θ), T=(μ,τ)

SetupDec: μ ∈ H. SetupExt: μ ∉ H.


If μ* ∉ H*, given (μ0*,μ1*) s.t. μ0*⋅μ1* = μ*, at least one of μ0,μ1 ∉ 

H. Can find using τ. (FindLossy)

If μ* ∈ H*, using μ, can find (μ0,μ1) s.t. μ0*⋅μ1* = μ* and both μ0,μ1 ∈ 
H (TrapKeyGen)

This is Check(PK0,PK1)



A set G (for us finite, unless otherwise specified) and a “group 
operation” ＊ that is associative, has an identity, is invertible, and 
(for us) commutative 


Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)


Order of a group G: |G| = number of elements in G


For any a∈G,  a|G| = a＊a＊...＊a (|G| times) = identity


Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}


Prototype: ZN (additive group), with g=1.  

Corresponds to arithmetic in the exponent.
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Decisional Diffie-Hellman 
(DDH) Assumption

Assumption about a distribution of finite cyclic groups and 
generators


{(G, g, gx, gy, gxy)}(G,g)←Gen; x,y←[|G|] ≈ {(G, g, gx, gy, gr)}(G,g)←Gen; x,y,r←[|G|]


Note: Requires that it is hard to find x from gx


Typically, G required to be a prime-order group. So arithmetic in 
the exponent is in a field.


Formulation equivalent to DDH in prime-order groups:


{(G, g, ga, gb, gau, gbu)}(G,g),a,b,u  ≈ {(G, g, ga, gb, gau, gbv)}(G,g),a,b,u,v


If can distinguish the above, then can break DDH:  
map (G, g, gx, gy, h) ↦ (G, g, ga, gx, gy.a, h)



SPH from DDH Assumption

SPH from DDH assumption on a prime order group G


{(G, g, ga, gb, gau, gbu)}(G,g),a,b,u  ≈ {(G, g, ga, gb, gau, gbv)}(G,g),a,b,u,v


 θ = (G,g,ga,gb), τ = (a,b) 
 η = (s,t)  and η* = gas+bt.  
 μ = (u,v) and μ* = (ga.u, gb.v). μ ∈ H iff u=v.  
 Hash(μ*,η) = ga.u.s⋅gb.v.t  and  Hash*(μ,η*) = g(as+bt).u
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