
Advanced Tools from  

 Modern Cryptography

Lecture 14

MPC: More Dimensions

Unfair

Fair

Guaranteed

Output delivery

Passive

Adversary

Active

Covert
½⅓ Corruption

Threshold

1

Composition

Standalone

Universally Composable

Commitment
OT

Broadcast

Set-up

MPC Dimensions

Adaptive

Static

Synchronous

Asynchronous

Time

Model

Complexity 

Parameters

None

Inefficient

Efficient

Simulation

Protocol Constraints

and features

Basic Dimensions

Adversary’s computational power: PPT adversary, Information-
theoretic security

Honest majority: Thresholds 1 (no honest majority), ½ and ⅓

Security Level: Passive security, UC security with selective abort,
or UC security with guaranteed output delivery

Setup: Point-to-point channels, Broadcast, Common Reference
String (CRS), OT

General MPC
Information-theoretic security

Passive with corruption threshold t < n/2

Passive with OT setup

Guaranteed Output UC with t < n/3

Guaranteed Output UC with t < n/2 and Broadcast

Selective Abort UC, with OT

Computational security

Passive

Standalone

Selective Abort UC, with CRS

Passive BGW/CCD

BGW

“Kilian.” (Also: GMW paradigm implemented
using OT-based proof)

GMW: using ZK proofs

Passive GMW

Composing Yao or Passive GMW with a passive-secure OT protocol

Composing Kilian with a CRS-based UC-secure OT protocol

“Rabin-BenOr”

Output Delivery
3 levels:

Unfair (a.k.a., selective abort)

Adversary can see its output and decide which set of
honest parties receive theirs

Fair

Adversary can cause abort for all parties or none, before
seeing its output

Guaranteed output delivery

Adversary cannot prevent honest parties from producing
an output. (Adversary will have well-defined inputs no
matter what it does.)

For input-less functions, fair protocol ⇒ guaranteed output delivery

Modify protocol so that if abort, locally sample output

Fair coin-tossing from commitment?

Alice commits to a random bit a, Bob sends a bit b, Alice
opens and they output a ⊕ b

Unfair: Alice can abort after learning the outcome

Two parties can never obtain a fair coin, given only unfair setups,
even under computational assumptions, even for standalone
security, even against fail-stop adversaries

Unfair setup: Sends outputs to the parties one at a time.
Adversary can abort at any point.

Fair Coin-Tossing

Guaranteed output delivery: Each party has a tentative output
after each message it receives, if an abort happens right after it

Best possible unfair setup, FVPE: executes the protocol on behalf of
the parties; at each round, sends each party its tentative output.

X0,Y0 if abort before start. Then FVPE Sends X1 (to Alice), Y1 (to
Bob), X2, Y2, …, Xn, Yn.

X0,Y0 independent; also uniform (by correctness for abort at start)

Correctness when no abort: Pr[Xn=b, Yn=b]=½, for b∈{0,1}

Pr[Xi=Yi] went from ½ to 1: So some i s.t. Pr[Xi=Yi]-Pr[Xi-1=Yi-1] ≥ 1/(2n).

i.e., Pr[Xi=Yi]-Pr[Xi=Yi-1] + Pr[Xi=Yi-1]-Pr[Xi-1=Yi-1] ≥ 1/(2n)

So, some i s.t. either Pr[Xi=Yi]-Pr[Xi=Yi-1] ≥ 1/(4n) or  
Pr[Xi=Yi-1]-Pr[Xi-1=Yi-1] ≥ 1/(4n)

Fair Coin-Tossing

Some i s.t. either Pr[Xi=Yi]-Pr[Xi=Yi-1] ≥ 1/(4n) or  
Pr[Xi=Yi-1]-Pr[Xi-1=Yi-1] ≥ 1/(4n)

Suppose Pr[Xi=Yi]-Pr[Xi=Yi-1] ≥ 1/(4n)

Note: Pr[Yi-1=0] ≈ ½, Pr[Yi=0] ≈ ½ (by correctness against Alice

who aborts after Yi-1 and one who aborts after Yi)

Consider two more attackers for corrupt Alice: 
A0: If Xi=0, abort immediately, else abort after Yi delivered 
A1: If Xi=1, abort immediately, else abort after Yi delivered

Under attack by A0,  
Pr[Bob outputs 0] = Pr[Xi=0,Yi-1=0] + Pr[Xi=1,Yi=0]  
 = Pr[Xi=0,Yi-1=0] - Pr[Xi=0,Yi=0] + Pr[Yi=0]  
⇒ Pr[Xi=0,Yi-1=0] ≈ Pr[Xi=0,Yi=0]

Similarly, from A1, Pr[Xi=1,Yi-1=1] ≈ Pr[Xi=1,Yi=1]

So, Pr[Xi=Yi-1] ≈ Pr[Xi=Yi]. Contradiction!

Fair Coin-Tossing

Broadcast
BGW protocol relied on broadcast to ensure all honest parties
have the same view of disputes, resolution etc.

Concern addressed by broadcast: a corrupt sender can send
different values to different honest parties

Broadcast with selective abort can be implemented easily, even
without honest majority

Sender sends message to everyone. Every party cross-checks
with everyone else, and aborts if there is any inconsistency.

If corruption threshold t < n/3, then it turns out that broadcast
with guaranteed output delivery can be implemented

If broadcast given as a setup, can do MPC with guaranteed
output delivery for up to t < n/2

Re
ca
ll

Otherwise not!

Consider 6 parties running the
code for A, B, C (A is the sender)

No Broadcast with Guaranteed
Output if 1/3 Corrupt

Broadcast requirements (message being a single bit):

If sender honest, all honest parties should output the bit
it sends (can’t abort)

All honest parties should agree on the outcome (can’t have
some output 0 and others 1)

A

B

B

A

C

C

Input 1
Input 0

Output 0

Note: can’t do this if A, B allowed
to have a priori shared secrets

(say message authentication keys)

Adversary corrupting C

No Broadcast with Guaranteed
Output if 1/3 Corrupt

Broadcast requirements (message being a single bit):

If sender honest, all honest parties should output the bit
it sends (can’t abort)

All honest parties should agree on the outcome (can’t have
some output 0 and others 1)

A

B

B

A

C

C
Output 1

Input 1
Input 0

No Broadcast with Guaranteed
Output if 1/3 Corrupt

Broadcast requirements (message being a single bit):

If sender honest, all honest parties should output the bit
it sends (can’t abort)

All honest parties should agree on the outcome (can’t have
some output 0 and others 1)

A

B

B

A

C

C

A

B

B

A

C

C

A

B

B

A

C

C

Broadcast requirements (message being a single bit):

If sender honest, all honest parties should output the bit
it sends (can’t abort)

All honest parties should agree on the outcome (can’t have
some output 0 and others 1)

No Broadcast with Guaranteed
Output if 1/3 Corrupt

Impossible to satisfy both constraints simultaneously, if 1/3 can
be corrupt

Irrespective of what computational assumptions are used!

But a priori shared keys can give broadcast with guaranteed
output delivery against unrestricted corruption (in the
synchronous model)

