Advanced Tools from Modern Cryptography

Lecture 15 MPC: Beyond General MPC

General MPC

Information-theoretic security

- Passive with corruption threshold t < n/2
- Passive with OT setup
- Guaranteed Output UC with t < n/3</p>
- Guaranteed Output UC with t < n/2 and Broadcast \"Rabin-BenOr"</p>
- Selective Abort UC, with OT Science (Also: GMW paradigm implemented using OT-based proof)
- Computational security
 - Passive { Composing Yao or Passive GMW with a passive-secure OT protocol
 - Standalone

Recall

GMW: using ZK proofs

Selective Abort UC, with CRS

Composing Kilian with a CRS-based UC-secure OT protocol

Passive BGW/CCD

Passive GMW

BGW

Beyond General MPC

In each model, only some functionalities will be realisable without setups (will call them **trivial** functionalities)
 Question: which functions are trivial in each model?

Trivial Functionalities: Passive Information-Theoretic

- For n-party information-theoretic passive security, which functions for each corruption threshold t
- Called the Privacy Hierarchy
 - All n-party functions appear at level [(n-1)/2] in this hierarchy (e.g., by Passive-BGW). Some are at level n: e.g., XOR or more generally, group addition. Level n-1 is same as level n.
 - At all intermediate levels t, examples known to exist which are not in level t+1
 - Open problem: characterise all functions at each level t (or even at level n)
 - For n=2, we do have a characterisation (only t=2 relevant)

Trivial 2-Party Functionalities: Information-Theoretic Passive security. (Restricting to symmetric SFE.) Deterministic SFE: Trivial ⇔ Decomposable

Decomposable Function

Decomposable

Undecomposable

	Γ	4	2
4	3	3	2
4	2	Т	J.

"Spiral"

Decomposable Function

Α

partial transcripts

full transcripts

Trivial 2-Party Functionalities: Information-Theoretic Passive security. (Restricting to symmetric SFE.) Open for randomized SFE! Standalone security Ø Deterministic SFE: Trivial \Leftrightarrow Uniquely Decomposable and Saturated

Decomposable Function

Decomposable

Not Uniquely Decomposable

Not Saturated

2

2

3

2

3

This strategy doesn't correspond to an input

Trivial 2-Party Functionalities: Information-Theoretic Passive security. (Restricting to symmetric SFE. Open for randomized SFE! Standalone security Ø Deterministic SFE: Trivial \Leftrightarrow Uniquely Decomposable and Saturated

OC security

 \bigcirc Trivial \Leftrightarrow Splittable

Trivial Functionalities: PPT Setting

- OT (a.k.a. sh-OT)
 OT (a.k.a. sh-OT)
 - For passive & standalone security: all n-party functionalities are trivial
 - For UC security: very few are trivial irrespective of computational hardness

 - Full combinatorial characterisation open for $n \ge 3$

Completeness

- We saw OT can be used to (passive- or UC-) securely realise any functionality
 - i.e., any other functionality can be reduced to OT
- The Cryptographic Complexity question:
 - Can F be reduced to G (for different reductions)?
 - F reduces to G: will write $F \subseteq G$
 - G complete if everything reduces to G
 - F trivial if F reduces to everything (in particular, to NULL)

PPT Setting: Completeness

PPT Passive security and PPT Standalone security

Onder sh-OT assumption, all functions are trivial and hence all are complete too!

PPT UC security, n=2:

Recall, only a few (splittable) functionalities are trivial

Onder sh-OT, turns out that every non-trivial functionality is complete

IT Setting: Completeness

Information-Theoretic Passive security

What is Simple?

Simple vs. Non-Simple

Edge ((x,a),(y,b)) exists iff f(x,y)=(a,b)

IT Setting: Completeness

Information-Theoretic Passive security

- What is Simple?

In the characteristic bipartite graph, each connected component is a biclique

• If randomized, within each connected component $w(u,v) = w_A(u) \times w_B(v)$

Simple vs. Non-Simple (Randomized)

Optionally one-sided coin-toss

Edge ((x,a),(y,b)) weighted with Pr[(a,b) | (x,y)] where x,y inputs and a,b outputs $(0,0) \qquad (\pm,0) \\ (0,1) \qquad \frac{1/2}{2} \qquad (\pm,1) \\ (1,0) \qquad \frac{1/2}{2} \qquad (\pm,\pm) \\ (1,1) \qquad \frac{1/2}{2} \qquad (\pm,\pm) \\ (1,1) \qquad \frac{1/2}{2} \qquad (\pm,\pm) \\ (\pm,\pm) \qquad (\pm,\pm$

Simple: within connected component w(u,v) = w_A(u)·w_B(v)

IT Setting: Completeness

Information-Theoretic Passive security

Information-Theoretic Standalone & UC security

 \bigcirc (Randomized) SFE: Complete \Leftrightarrow Core is not Simple

What is the core of an SFE?

SFE obtained by removing "redundancies" in the input and output space

A Map of 2-Party Functions

