Advanced Tools from
Modern Cryptography

Lecture 16
Encryption & Homomorphic Encryption

Public-Key Encryption
A
@ Syntax { a.k.a. asymmetric-key encryption }
a KeyGen outputs (PK,SK) < P%'x %

a Enc: MXPKxXR—C

a Dec: CXSK— M
@ Correctness
@ V(PK,SK) € Range(KeyGen), Dec(Enc(m,PK), SK) = m
@ Security
@ Against Chosen-Plaintext Attack: IND-CPA security

@ (Stronger notions of security exist: e.g., IND-CCA security)

SIM-CPA

PK
SK
Dec

A—)

o m
m

O
m | Secure (and\ m
correct) if:
v 1
3 x? s.t.
vV &

REAL and IDEAL

{
m
output of @@ is
distributed
indistinguishably in REAL

IDEAL

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X=gX

>
Random y &

Y:gy

Y

Output Yx Output XY

’ O g% g’
‘ gxy ??

Why DH-Key-exchange
could be secure

@ Given gx, g” for random x, y, g/ should be “hidden”

@ i.e., could still be used as a pseudorandom element

D

e, (g, 9%, g¥) = (g% g%, R)
@ Is that reasonable to expect?
@ Decisional DH Assumption: A family of cyclic groups, with

{(gx, g, gxy)}(G,g)eGroquen; xy—[lgl] = {(gx, g, gr)}(G,g)eGroquen; x,y,r<—[IGl]

where (G,g) s.t. G is generated by g (and typically |G| prime, so
that operations in exponent are in a field)

D

D

El Gamal Encryption

Based on DH key-exchange

Bob's "message” in the key-
exchange is his PK

Alices message in the key-
exchange and the message
masked with this key fogether
form a single ciphertext

Random vy
< Y:gY
Random x
X
X=g* > -
K=Yx K:XY
C
C=MK >
M=CK-!

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc(G,g,Y)(M) — (X=gx, C=MYX)
Dec(G,qy)(X,C) = CX~

® KeyGen uses GroupGen to get (G,g)

® x, y uniform from [|G|]

® Message encoded info group element, and
decoded

Homomorphic Encryption

#» Group Homomorphism: Two groups G and G" are homomorphic
if there exists a function (homomorphism) f:G—G’ such that
for all x,y € G, f(x) +¢ fly) = f(x +5 V)

» Homomorphic Encryption: A CPA secure (public-key) encryption
s.t. Dec(C) +m Dec(D) = Dec (C +c D) for ciphertexts C, D

2 i.e. Enc(x) +c Enc(y) is like Enc(x +m V)
» Interesting when +¢c doesnt require the decryption key

e.g. El Gamal: (g<,miYx) x (gx2,m2Yx2) = (gx3,mim.Yx3)

Rerandomization

@ Often (but not always) another property is required of a
homomorphic encryption scheme

» Unlinkability

@ For any two ciphertexts cx=Enc(x) and cy=Enc(y),
Add(cx,cy) should be identically distributed as Enc(x +m V).
Add is a randomized operation

Alternately, a ReRand operation s.t. for all valid ciphertexts
cx, ReRand(cx) is identically distributed as Enc(x)

Then, we can let Add(cxcy) = ReRand(cx +c ¢y) where
+c may be deterministic

@ Rerandomization useful even without homomorphism

Unlinkable Homomorphic
Encryphon

add(h;,h2) Add(c;,c2)
A\ | m1+mz (pK) \ w
hi, hz\ ° A TE(ml), . (SK)

‘4 mz, ... w

IDEAL

A
(PK)

@ Considers only passive corruption

» Functionality gives “handles” to messages posted; accepts
requests for posting fresh messages, or derived messages

@ Unlinkability: Above, receiver gets only the message mi+m: in
IDEAL. Even if A & Recv collude, cant tell if it is a fresh
message or derived from other messages

An OT Protocol

(for passive corruption)

@ Using an (unlinkable) rerandomizable
encryption scheme

® Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

® Sender “multiplies” c;i with x;:
1*c:=ReRand(c), O*c:=E(0)

®Simulation for passive-corrupt
receiver: set zp = E(xp) and
Z1-b = E(O)

®Simulation for passive-corrupt
sender: set co,C1 to be say E(1)

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each input was secret-shared
among the parties, and computed on shares (using OTs for x gates)

Alternate approach: each wire value is kept encrypted, publicly,
and the key is kept shared

@ All parties encrypt their inputs and publish
» Evaluate each wire using homomorphism (coming up)

@ Finally decrypt the output wire value using threshold
decryption

@ Threshold decryption: KeyGen protocol so that PK is public
and SK shared; Decryption protocol that lets the parties
decrypt a ciphertext keeping their SK shares private

Threshold El Gamal
(Passive Security)

Goal: n parties fo generate a PK for El Gamal, so that SK is
shared amongst them. Can decrypt messages only if all n parties
come together. Will require security against passive corruption.

Distributed Key-Generation:

@ (G,g) < Groupgen by Party; (DDH should hold for Party; too)
@ Each Party; picks random exponent y; and publishes Y; = gvi
@ All parties compute Y = II; Y. Public-key = (G,g,Y)

a Secret-key = (G,g,y), where y := 3 v; (secret). Note: Y = gv

Encryption as in El Gamal

Distributed Decryption: Given ciphertext (X,C), each party
publishes K™ = X . All parties compute K™ = T[iKi" and M = CK™

Homomorphic Encryption
for MPC

@ Passive-securely computing using homomorphism
@ Notation: Encrypted values shown as [m] etc.
» Operations available: [x]+[y] = [x+Yy], and a*[x] = [ax]
@ e.g., in GF(2), 0=[x] = Enc(0), 1+[x] = ReRand([x])
@ Addition directly, without communication

@ Multiplication: All parties have [x] and [y]. Need [xyl].

Each party P; picks aj,bi and publishes [ail, [bil, [aiy], [bix]

@ All compute [x+a], [y+b], [ay], [bx] where a = Ziai and b = % b
#» Each P; publishes [aib] = > ai*[bj], and all compute [ab]

@ Threshold decrypt (x+a),(y+b). Compute [z] where z=(x+a)(y+Db).
@ All compute [xy] = [z] - [ay] - [bx] - [ab]

