Encryption Beyond Group Homomorphism: Bilinear Groups

Lecture 18

Homomorphic Encryption

- Group Homomorphism: Two groups G and G' are homomorphic if there exists a function (homomorphism) $f:G \rightarrow G'$ such that for all $x,y \in G$, $f(x) +_{G'} f(y) = f(x +_G y)$
- Homomorphic Encryption: A CPA secure (public-key) encryption s.t. $Dec(C) +_M Dec(D) = Dec(C +_C D)$ for ciphertexts C, D
 - \odot i.e. Enc(x) +_C Enc(y) is like Enc(x +_M y)
- e.g., El Gamal: $(g^{x_1}, m_1 Y^{x_1}) \times (g^{x_2}, m_2 Y^{x_2}) = (g^{x_3}, m_1 m_2 Y^{x_3})$
- e.g., Paillier: $g^{m1}r_1^n \times g^{m2}r_2^n = g^{m1+m2}r_3^n$

Homomorphic Encryption

- Ring Homomorphism: Two rings A and A' are homomorphic if there exists a function (homomorphism) $f:A \rightarrow A'$ s.t. $\forall x,y \in A$, $f(x) +_{A'} f(y) = f(x +_A y)$ and $f(x) \times_{A'} f(y) = f(x \times_A y)$
- Fully Homomorphic Encryption: A CPA secure (public-key) encryption s.t. $Enc(x) +_C Enc(y)$ is like $Enc(x +_M y)$ and $Enc(x) \times_C Enc(y)$ is like $Enc(x \times_M y)$
 - Candidate solutions since 2009 using "lattice" problems
 - Today: a simpler kind of encryption, which supports only one multiplication (and any number of additions before and after the multiplication)
 - Uses "bilinear pairings"

Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, e: $G \times G \rightarrow G_T$ that is "bilinear"
 - Typically, prime order (cyclic) groups
 - \circ e(ga,gb) = e(g,g)ab
 - Multiplication (once) in the exponent!
 - $e(g^a,g^b) e(g^{a'},g^b) = e(g^{a+a'},g^b) ; e(g^a,g^{bc}) = e(g^{ac},g^b) ; ...$
 - Not degenerate: e(g,g,) ≠ 1
- Decisional Bilinear Diffie-Hellman (DBDH) Assumption: For random (a,b,c,z), the distributions of (ga,gb,gc,gabc) and (ga,gb,gc,gz) are indistinguishable

3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
 - Generalizes Diffie-Hellman key-exchange
- \odot Let e: $G \times G \rightarrow G_T$ be bilinear and g a generator of G
- Alice broadcasts g^a, Bob broadcasts g^b, and Carol broadcasts g^c
- Each party computes e(g,g)abc
 - \odot e.g. Alice computes $e(g,g)^{abc} = e(g^b,g^c)^a$
 - By D-BDH the key $e(g,g)^{abc} = e(g,g^{abc})$ is pseudorandom given eavesdropper's view (g^a,g^b,g^c)

Identity-Based Encryption

- A key-server (with a master secret-key MSK and a master public-key MPK) that can generate (PK,SK) = (ID,SK_{ID}) for any given ID ("fancy public-key")
 - Encryption will use MPK, and the receiver's ID
 - Receiver has to obtain SK_{ID} from the authority

IBE from Pairing

- MPK: g,h, Y=e(g,h)^γ, $\pi = (u,u_1,...,u_n)$
- MSK: hy
- \odot Enc(m;s) = (g^r, π (ID)^r, M.Y^r)
- SK for ID: $(g^{\dagger}, h^{\gamma}.\pi(ID)^{\dagger}) = (d_1, d_2)$
- Dec (a, b, c; d_1 , d_2) = c/ [$e(a,d_2)$ / $e(b,d_1)$]
- © CPA security based on Decisional-BDH

Some More Assumptions

- © Computational-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible to find gabc
- Decision-Linear Assumption: $(h_1,h_2,g,h_1^x,h_2^y,g^{x+y})$ and $(h_1,h_2,g,h_1^x,h_2^y,g^z)$ are indistinguishable
- Strong DH Assumption: For random x, given (g,g^x) infeasible to find $g^{1/x}$ or even $(y,g^{1/(x+y)})$. (Note: can <u>check</u> $e(g^xg^y, g^{1/(x+y)}) = e(g,g)$.)
 - q-SDH: Given $(g,g^x,...,g^{x^q})$, infeasible to find $(y,g^{1/(x+y)})$
- Subgroup-Decision Assumption: Indistinguishability of random elements in G from those in a large subgroup of G (requires G to have composite order)
- DDH when e: $G_1 \times G_2 \rightarrow G_T$: DDH could hold in G_1 and/or G_2

BGN Encryption

- Boneh-Goh-Nissim Encryption scheme
 - Supports one multiplication and any number of additions through a layer of encryption
 - Based on the Subgroup-Decision Assumption
 - e: $G \times G \rightarrow G_T$ where G is a cyclic group with a large non-trivial subgroup
 - □ |G| = pq, a product of two (similar-sized) primes
 - ⊕ H ⊆ G generated by h=g^q, where g generates G, has |H|=p
 - Assumption: A random element in H is indistinguishable from a random element in G (cf. DCR)

BGN Encryption

- @ e: $G \times G \to G_T$ where G is a cyclic group with |G|=pq, and Subgroup-Decision assumption holds for $H \subseteq G$, |H|=p (i.e., $H=\langle g^q \rangle$)
- Message space = Ring of integers modulo n
 - But efficient decryption will be provided only for a small subset of messages
 - In fact, correct decryption will be possible only up to G/H (i.e., $m \in \{0,..,q-1\}$) even inefficiently
- Idea: Enc_{g,h}(m;r) = g^mh^r, where g generates G and h=g^q generates H, so that encrypted messages can be added by multiplying ciphertexts, multiplied by plaintext by exponentiating, and multiplied together by pairing ciphertexts
 - o e(g^{m+qr},g^{m'+qr'}) = g_T^{mm' + qr''} where g_T = e(g,g) generates G_T

BGN Encryption

- Key generation: Sample n = pq, G s.t. |G|=n, and generator g for H. Public key includes (G,g,h) and secret-key is (G,g,p).
- \odot Enc_{g,h}(m;r) = g^mh^r, where g generates G and h=g^q generates H
- Dec_{g,p}(c): Find m s.t. $g^{mp} = c^p$ (by brute force, when m is from a small set)

Quadratic speedup using "Pollard's Kangaroo method" for discrete log

- Homomorphic operations (in group G): $C_1 + C_2 = C_1 \cdot C_2$, $C_2 = C_1 \cdot C_2$, $C_3 \cdot C_4 = C_4 \cdot C_5$. $C_4 \cdot C_5 = C_6 \cdot C_6$.
 - But x_C results in a ciphertext in G_T ! Decryption, homomorphic addition and multiplication by plaintext (but not multiplication of two encrypted values), rerand defined for these ciphertexts too
- © CPA secure under Subgroup-Decision assumption on G and H (which implies the same for G_T and H_T): Encryption using a random element in G instead of h^r (random element in H) has no information about message.

2-DNF Computation using BGN Encryption

- Consider a passive-secure 2-party computation problem where Bob has an input bit-vector x and Alice has a secret "2-DNF formula" f. Bob should get f(x) only, and Alice should learn nothing.
 - Disjunctive Normal Form: OR (disjunction) of ANDs
 - 2-DNF: $\bigvee_{i=1 \text{ to } n}$ (y_i \wedge z_i) where y_i, z_i are literals (input variables or their negations)

 Full-fledged decryption not
 - Passive-secure protocol:
 - Bob generates keys for BGN encryption, encrypts each bit using it, and sends the PK and ciphertexts to Alice

needed in the protocol

Alice homomorphically computes $c \leftarrow Enc(r \cdot f'(x))$ where f' is a degree-2 polynomial version of f, using + for \vee and \times for \wedge and (1-x) for $\neg x$, and r random. Bob can (only) check if f'(x)=0 or not.

2-DNF Computation using BGN Encryption

- In some applications, want to protect against encryption of illegal values
- Suppose we require m ∈ $\{0,1\}$. But BGN allows m ∈ $\{0,...,q-1\}$.
- Can protect against revealing information by blinding encrypted outputs
 - Instead of returning a ciphertext c, return c $+_c$ Enc(α), where α =0 if all given values are valid, and random otherwise

 - \odot Enc(α) can be computed from { Enc(x_i) } I

Beyond One Multiplication?

- Instead of bilinear maps, if n-linear maps are available, can support up to degree n polynomials
 - Open problem to construct good candidates for multi-linear maps
- Fully Homomorphic Encryption: No a priori bound on the degree of the polynomials that can be homomorphically evaluated. Polynomial may be specified as an arithmetic circuit
- Levelled Homomorphic Encryption
 - Homomorphic encryption supporting an arbitrary but a priori upper bound on the (mult.) depth of the circuit to be evaluated
 - Ciphertexts of different levels, based on number of mult. used
- Somewhat Homomorphic Encryption: Like Levelled Homomorphic Encryption, but maximum level not arbitrarily large