### Lattice Cryptography Lecture 19

### Lattices

0

 $\mathbf{O}$ 

0

 $\mathbf{O}$ 

0

 $\bigcirc$ 

0

 $\bigcirc$ 

0

0

0

0

0

0

- A infinite set of points in R<sup>n</sup> obtained
   by tiling with a "basis"
  - Formally, {  $\Sigma_i \times_i \mathbf{b_i}$  |  $\mathbf{x}_i$  integers }
- Basis is not unique
- Several problems related to highdimensional lattices are believed to be hard, with cryptographic applications
  - Hardness assumptions appear to be "milder" (worst-case hardness)
  - Believed to hold even against quantum computation:
     "Post-Quantum Cryptography"

### Lattices

 $\bigcirc$ 

0

0

0

0

0

 $\bigcirc$ 

0

0

0

• Given a basis  $\{\underline{b}_1, \dots, \underline{b}_m\}$  in  $\mathbb{R}^n$ , lattice has points •  $\{ \Sigma_i \mathbf{x}_i \mathbf{b}_i \mid \mathbf{x}_i \text{ integers } \}$  $\odot$  Two n-dim lattices in  $\mathbb{Z}^n$  associated with 0 0 an mxn matrix A over  $\mathbb{Z}_q$ LA: Vectors "spanned" by rows of A 0

 $\blacksquare$  L<sub>A</sub><sup>⊥</sup> : Vectors "orthogonal" to rows of A • Here,  $L_A$ ,  $L_{A^{\perp}}$  in  $\mathbb{Z}^n$ , but above operations mod q (i.e., over  $\mathbb{Z}_q$ )

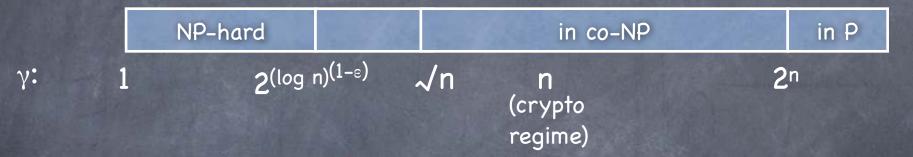
 Dual lattice L\*: { <u>v</u> | <<u>v</u>, <u>u</u> > ∈  $\mathbb{Z}$ , ∀<u>u</u> ∈ L } e.g. (L<sub>A</sub>)\* = 1/q L<sub>A</sub>⊥ and (L<sub>A</sub>⊥)\* = 1/q L<sub>A</sub>

# Lattices in Cryptography

- Several problems related to lattices (lattice given as a basis) are believed to be computationally hard in <u>high dimensions</u>
- Closest Vector Problem (CVP): Given a point in R<sup>n</sup>, find the point closest to it in the lattice
- Shortest Vector Problem (SVP): Find the shortest non-zero vector in the lattice
  - $SVP_{\gamma}$ : find one within a factor  $\gamma$  of the shortest
  - GapSVP<sub>γ</sub>: decide if the length of the shortest vector is < 1 or</li>
     > γ (promised to be one of the two)
- uniqueSVP<sub>γ</sub>: SVP, when guaranteed that the next (non-parallel) shortest vector is longer by a factor γ or more
   Shortest Independent Vector Problem (SIVP): Find n independent vectors minimizing the longest of them

# Lattices in Cryptography

Worst-case hardness of lattice problems (e.g. GapSVP)



Assumptions about worst-case hardness (e.g. P≠NP) are qualitatively simpler than that of average-case hardness

Crypto requires average-case hardness

For many lattice problems average-case hardness implied by worst-case hardness of related problems

# Average-Case/Worst-Case

### Connection

- Worst-case hardness: Hard to solve <u>every instance</u> of the problem (holds even if most instances are easy)
- Crypto typically needs average case hardness assumption: Random instance of a problem is hard to solve (broken if an algorithm can solve many instances)
- Worst-case connection: Show that solving random instances of Problem 1 is as hard as solving another (hard) problem Problem 2 in the worst case
- Connection shows that if a few instances (of the second problem) are hard, most instances (of the first problem) are
- For many lattice problems average-case hardness assumptions are implied by worst-case hardness of related problems (but at regimes not known to be NP-hard)

### Hash Functions and OWF

#### • CRHF: $f(\underline{\mathbf{x}}) = A\underline{\mathbf{x}} \pmod{q}$

x required to be a "short" vector (i.e., each co-ordinate in the \_\_\_\_range [0,d-1] for some small d)

Short Integer Solution Problem

Has a worst-case connection to lattice problems

A is an n×m matrix: maps m log d bits to n log q bits (for compression we require m > n log<sub>d</sub>q)

Collision yields a short vector (co-ordinates in [-(d-1),d-1])  $\mathbf{z}$  s.t A $\mathbf{z}$  = 0 (mod q): i.e., a short vector in the lattice  $L_{A^{\perp}}$ Simple to compute: if d small (say, d=2, i.e.,  $\mathbf{x}$  binary), f( $\mathbf{x}$ ) can be computed using O(n m) additions mod q

If sufficiently compressing (say by half), a CRHF is also a OWF

### Succinct Keys

The hash function is described by an n x m matrix over  $\mathbb{Z}_q$ , where n is the security parameter and m > n

Large key and correspondingly large number of operations

Osing "ideal lattices" which have more structure:

A random basis for such a lattice can be represented using just m elements of  $\mathbb{Z}_q$  (instead of mn)

• Matrix multiplication can be carried out faster (using FFT) with  $\tilde{O}(m)$  operations over  $\mathbb{Z}_q$  (instead of O(mn))

Security depends on worst-case hardness of same problems as before, but when restricted to ideal lattices

### Public-Key Encryption

NTRU approach: Private key is a "good" basis, and the public key is a "bad basis"

 Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis

 To encrypt a message, encode it (randomized) as a short "noise vector" u. Output c = v+u for a lattice point v that is chosen using the public basis

To decrypt, use the good basis to find v as the closest lattice vector to c, and recover u=c-v

 Use lattices with succinct basis (defined over the ring of degree N TRUncated polynomials)

Conjectured to be CPA secure for appropriate lattices. No security reduction known to simple lattice problems

# Learning With Errors

LWE (computational version): given noisy inner-products of random vectors with a hidden vector, <u>find</u> the hidden vector

Given <<u>a1</u>,<u>s</u>>+e1 , ..., <<u>am</u>,<u>s</u>>+em and <u>a1</u>,....,<u>am</u>, find <u>s</u>. All operations in Z<sub>q</sub>. <u>ai</u> uniform, ei small Gaussian noise (rounded)

• If m fixed a priori: Given (As+ $\underline{e}$ , A) find s where A  $\in \mathbb{Z}_q^{m \times n}$ 

Decision version: distinguish such an input from a random input

Assumed to be hard (note: average-case hardness). Has been connected with worst-case hardness of GapSVP

• Ring LWE (Succinct version):  $\langle \underline{a}_i, \underline{s} \rangle + e_i$  replaced with  $a_i \cdot \underline{s} + e_i$ , where all elements belong to an appropriate ring. Known to be as hard as SVP<sub>y</sub> for ideal lattices.

## Learning With Errors

 (Decision) LWE is a fairly strong assumption that subsumes some other (more traditional) lattice assumptions

The Hardness of (Decision) LWE  $\Rightarrow$  Hardness of Short Integer Solution

Given algorithm for SIS, an algorithm for D-LWE: i.e, given (A,b), to check if b=As+e for a short e:

• Find a short solution  $\underline{\mathbf{x}}$  for  $A^{\mathsf{T}}\underline{\mathbf{x}} = 0$ . Check if  $\langle \underline{\mathbf{x}}, \underline{\mathbf{b}} \rangle$  is short

• If  $\underline{\mathbf{b}} = A\underline{\mathbf{s}} + \underline{\mathbf{e}}$  then,  $\langle \underline{\mathbf{x}}, \underline{\mathbf{b}} \rangle = \langle \underline{\mathbf{x}}, \underline{\mathbf{e}} \rangle$ , which is short. If  $\underline{\mathbf{b}}$  random, then  $\langle \underline{\mathbf{x}}, \underline{\mathbf{b}} \rangle$  random (for non-zero  $\underline{\mathbf{x}}$ ), and unlikely to be short.

# Learning With Errors

A simple Worst-case/Average-case connection of (Decision) LWE

• Worst- $\underline{s}$  hardness  $\Rightarrow$  Average- $\underline{s}$  hardness

Note: A is still random

Given arbitrary instance (A,b), define b\*= b + Ar for a random vector r. If b=As+e, then b\*=As\*+e, for random s\*=s+r. If b random, b\* random

So, run algorithm for average <u>s</u> on (A,<u>b</u>\*) and output its decision

# Public-Key Encryption

An LWE based approach:

Next

time

- Public-key is (A,P) where P=AS+E, for random matrices (of appropriate dimensions) A and S, and a noise matrix E over  $\mathbb{Z}_q$
- To encrypt an n bit message, first map it to a vector  $\underline{v}$  in (a sparse sub-lattice of)  $\mathbb{Z}_{q^n}$ ; pick a random vector  $\underline{a}$  with small coordinates; ciphertext is ( $\underline{u},\underline{c}$ ) where  $\underline{u} = A^T \underline{a}$  and  $\underline{c} = P^T \underline{a} + \underline{v}$
- Dec(( $\underline{\mathbf{u}},\underline{\mathbf{c}}$ ),S): recover  $\underline{\mathbf{v}}$  by "rounding"  $\underline{\mathbf{c}}$  S<sup>T</sup> $\underline{\mathbf{u}}$  =  $\underline{\mathbf{v}}$  + E<sup>T</sup> $\underline{\mathbf{a}}$

Allows a small error probability; can be made negligible by first encoding the message using an error correcting code
 CPA security: By (Decision) LWE assumption, the public-key is indistinguishable from random; and, encryption under random (A,P) loses essentially all information about the message

If B=[A|P] uniform,  $(B,B^{T}a)$  is statistically close to uniform



Lattice based cryptography

- Candidate for post-quantum cryptography
- Security typically based on worst-case hardness of problems
- Several problems: SVP and variants, LWE
- Applications: Hash functions, PKE, ...
- Next: Fully Homomorphic Encryption