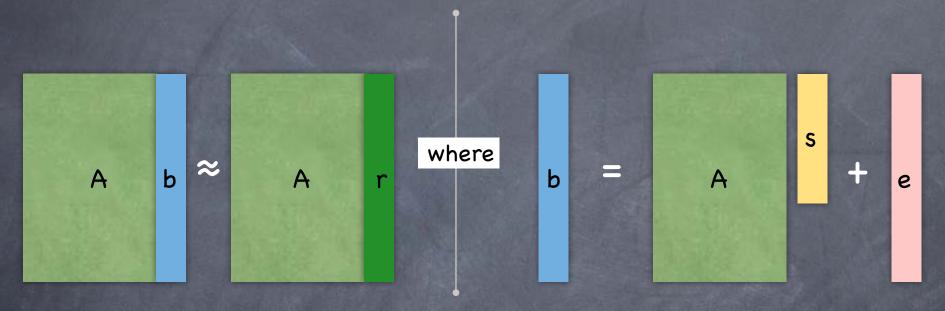
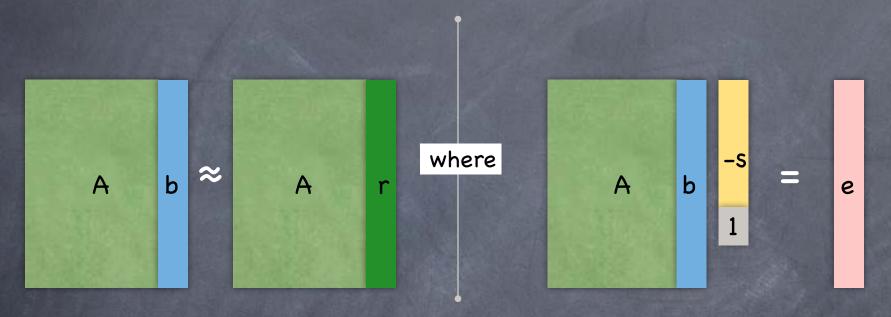
Lattice Cryptography: Towards Fully Homomorphic Encryption Lecture 20

Learning With Errors



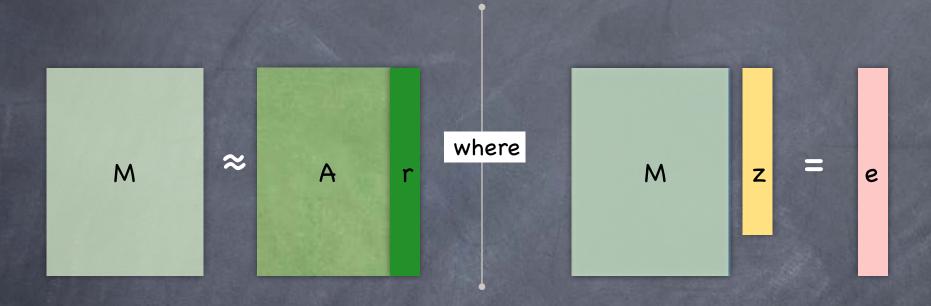
- ▶ LWE (decision version): $(A,A\underline{s}+\underline{e}) \approx (A,\underline{r})$, where A random matrix in $A \in \mathbb{Z}_q^{m \times n}$, \underline{s} uniform, \underline{e} has "small" entries from a Gaussian distribution, and \underline{r} uniform.
- ◆ Average-case solution for LWE ⇒ Worst-case solution for GapSVP (for appropriate choice of parameters)

Learning With Errors



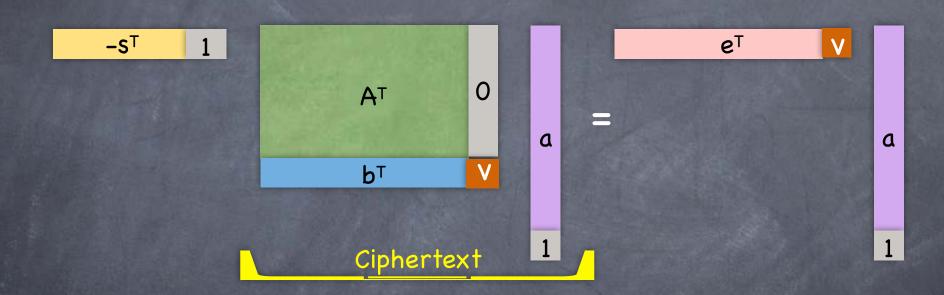
- LWE (decision version): $(A,A\underline{s}+\underline{e}) \approx (A,\underline{r})$, where A random matrix in $A \in \mathbb{Z}_q^{m \times n}$, \underline{s} uniform, \underline{e} has "small" entries from a Gaussian distribution, and \underline{r} uniform.
- ◆ Average-case solution for LWE ⇒ Worst-case solution for GapSVP (for appropriate choice of parameters)

Learning With Errors

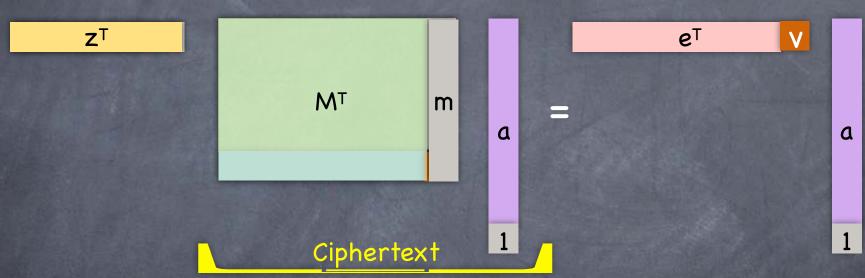


• i.e., a pseudorandom matrix $M \in \mathbb{Z}_q^{m \times n'}$ and non-zero $\underline{\mathbf{z}} \in \mathbb{Z}_q^{n'}$ s.t. entries of $M\underline{\mathbf{z}}$ are all small (n'=n+1)

PKE from LWE



PKE from LWE



- © Ciphertext = $M^T \underline{a} + \underline{m}$ where \underline{m} encodes the message and $\underline{a} \in \{0,1\}^m$
- Decryptng: From $\underline{\mathbf{z}}^{\mathsf{T}}(\mathsf{M}^{\mathsf{T}}\underline{\mathbf{a}} + \underline{\mathbf{m}}) = \underline{\mathbf{e}}^{\mathsf{T}}\underline{\mathbf{a}} + \underline{\mathbf{z}}^{\mathsf{T}}\underline{\mathbf{m}}$ where $\underline{\mathbf{e}}^{\mathsf{T}}\underline{\mathbf{a}}$ is small. To allow decoding from this for, say $\mu \in \{0,1\}$, let $\underline{\mathbf{z}}^{\mathsf{T}}\underline{\mathbf{m}} = \mathbf{v} \approx \mu(q/2)$.
- - Claim: If $M \in \mathbb{Z}_q^{m \times n'}$ is <u>truly random</u>, $\mathbf{a} \in \{0,1\}^m \setminus \{0^m\}$, $m >> n' \log q$, then $M^T \mathbf{a}$ is very close to being <u>uniform</u>

Randomness Extraction

- Entries in \underline{a} are not uniformly random over \mathbb{Z}_{q^m} , but concentrated on a small subset $\{0,1\}^m$. We need $M^T\underline{a}$ to be uniform over $\mathbb{Z}_q^{n'}$
- Follows from two more generally useful facts:
 - $H_M(a) = M^T a$ is a 2-Universal Hash Function (for non-zero a)
 - If H is a 2-UHF, then it is a good randomness extractor
 - If m >> n' log q, the entropy of \underline{a} (m bits) is significantly more than that of a uniform vector in $\mathbb{Z}_q^{n'}$ and a good randomness extractor will produce an almost uniform output

Universal Hashing

- **⊘** Combinatorial HF: $A \rightarrow (x,y)$; $h \leftarrow \#$. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - $∀x,z Pr_{h \leftarrow M} [h(x)=z] = 1/|Z| (where h:X→Z)$
 - $\forall x \neq y, w, z \Pr_{h \leftarrow \mathcal{U}} [h(x) = w, h(y) = z] = 1/|Z|^2$
 - $\Rightarrow \forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$

0	e.g.	$h_{a,b}(x)$	=	ax+b	(in	a	finite	field,	X=Z)
---	------	--------------	---	------	-----	---	--------	--------	------

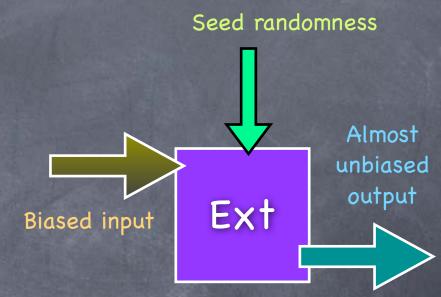
×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

Negligible collision-probability if super-polynomial-sized range

- $Pr_{a,b} [ax+b=z] = Pr_{a,b} [b=z-ax] = 1/|Z|$
- Pr_{a,b} [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the two equations (for x≠y)
 - $Pr_{a,b} [ax+b = w, ay+b = z] = 1/|Z|^2$
- Exercise: Mx (M random matrix) is a 2-UHF for non-zero boolean x

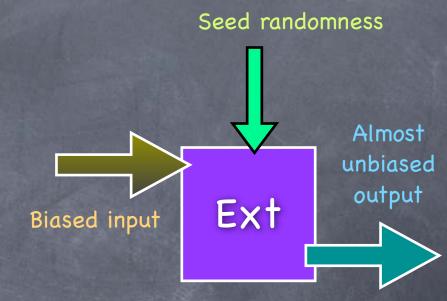
Randomness Extractor

- Input has high "min-entropy"
 - i.e., probability of any particular input string is very low
- Seed uniform and independent of input
- Output vector is shorter than the input
- Ext(inp,seed)) ≈ Uniform
 - Statistical closeness
- A <u>strong extractor</u>: (seed, Ext(inp, seed)) ≈ (seed, Uniform)
 - i.e., for any input distribution, most choices of seed yield a good deterministic extractor

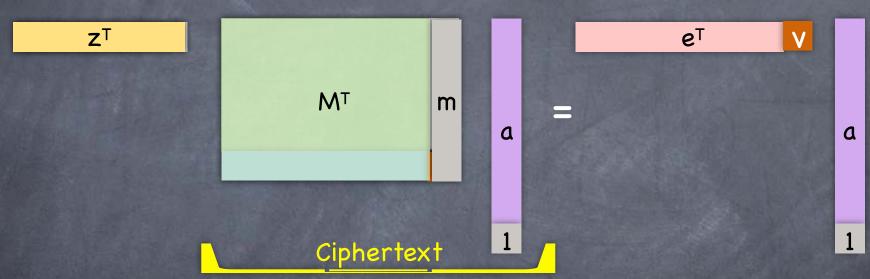


Randomness Extractor

- Leftover Hash Lemma:
 - Any 2-UHF is a strong extractor that can extract almost all of the min-entropy in the input
- A very useful result
 - We need only a special case here:
 - Only for a particular 2-UHF $(H_M(x) = Mx)$
 - Only for a particular input distribution (x uniform over {0,1}m)

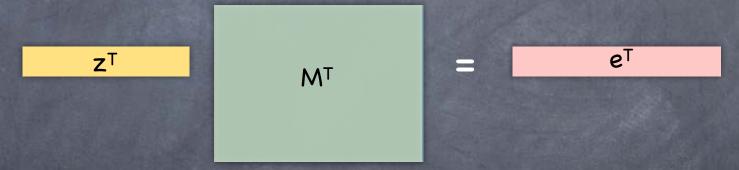


PKE from LWE



- © Ciphertext = $M^T \underline{a} + \underline{m}$ where \underline{m} encodes the message and $\underline{a} \in \{0,1\}^m$
- Decryptng: From $\underline{\mathbf{z}}^{\mathsf{T}}(\mathsf{M}^{\mathsf{T}}\underline{\mathbf{a}} + \underline{\mathbf{m}}) = \underline{\mathbf{e}}^{\mathsf{T}}\underline{\mathbf{a}} + \underline{\mathbf{z}}^{\mathsf{T}}\underline{\mathbf{m}}$ where $\underline{\mathbf{e}}^{\mathsf{T}}\underline{\mathbf{a}}$ is small. To allow decoding from this for, say $\mu \in \{0,1\}$, let $\underline{\mathbf{z}}^{\mathsf{T}}\underline{\mathbf{m}} = \mathbf{v} \approx \mu(q/2)$.
- - Claim: If $M \in \mathbb{Z}_q^{m \times n'}$ is <u>truly random</u>, $\mathbf{a} \in \{0,1\}^m \setminus \{0^m\}$, $m >> n' \log q$, then $M^T \mathbf{a}$ is very close to being <u>uniform</u>

- Want to allow homomorphic operations on the ciphertext
- Idea: Ciphertext is a matrix masked by a pseudorandom matrix that can be "annihilated" with secret key. Addition and multiplication of messages given by addition and multiplication of ciphertexts.
- ullet Recall from LWE: $M \in \mathbb{Z}_q^{m \times n}$ and $\underline{\boldsymbol{z}} \in \mathbb{Z}_q^n$ s.t. $\underline{\boldsymbol{z}}^T M^T$ has small entries



- First attempt: Public-Key = M, Secret-key = z
 - Enc(μ) = M^TR + μ I where $\mu \in \{0,1\}$, R $\leftarrow \{0,1\}^{m \times n}$, and I_{n×n} identity
 - Security: LWE (and LHL) \Rightarrow MTR is pseudorandom
 - Dec_z(C): $z^TC = e^TR + \mu z^T$ has "error" $\underline{\delta}^T = e^TR$. Can recover μ since error has small entries (w.h.p.)

- First attempt:
 - \bullet Enc(μ) = M^TR + μ I
 - Dec_z(C): $z^TC = e^TR + \mu z^T$ has error $\delta^T = e^TR$
 - $C_1+C_2 = M^T(R_1+R_2) + (\mu_1+\mu_2) I$ has error $\underline{\delta}^T = \underline{\delta}_1^T + \underline{\delta}_2^T$
 - Error adds up with each operation
 - OK if there is an a priori bound on the <u>depth</u> of computation: Levelled Homomorphic Encryption
 - $C_1 \times C_2$: Error = ?
 - $\mathbf{z}^{\mathsf{T}}C_1C_2 = (\underline{\delta}_1^{\mathsf{T}} + \mu_1\mathbf{z}^{\mathsf{T}})C_2 = \underline{\delta}_1^{\mathsf{T}}C_2 + \mu_1(\underline{\delta}_2^{\mathsf{T}} + \mu_2\mathbf{z}^{\mathsf{T}})$
 - Error = $\underline{\delta}_1^T C_2 + \mu_1 \underline{\delta}_2^T$
 - Problem: Entries in δ₁^TC₂ may not be small, as entries in C₂ are not small! (Since $μ₁ ∈ {0,1}$, μ₁δ₂^T does have small entries)

- Problem: Entries in $\delta_1^T C_2$ may not be small
- Solution Idea: Represent ciphertext as bits!
 - But homomorphic operations will be affected
 - Observation: Reconstructing a number from bits is a linear operation
 - If $\alpha \in \mathbb{Z}_q^m$ has bit-representation $B(\alpha) \in \{0,1\}^{km}$ (k=O(log q)), then $G(\alpha) = \alpha$, where $G \in \mathbb{Z}_q^{m \times km}$ (all operations in \mathbb{Z}_q)
 - B can be applied to matrices also as B : $\mathbb{Z}_q^{m \times n} \to \mathbb{Z}_q^{km \times n}$ and we have G B(α) = α

The Actual Scheme

- ${\color{red} \bullet}$ Supports messages $\mu \in \{0,1\}$ and NAND operations up to an a priori bounded depth of NANDs
- The Public key $M \in \mathbb{Z}_q^{m \times n}$ and private key \mathbf{z} s.t. $\mathbf{z}^T M$ has small entries
- Enc(μ) = MTR + μ G where R \leftarrow {0,1}^{m×km} (and G $\in \mathbb{Z}_q^{n\times km}$ the matrix to reverse bit-decomposition)
- **Dec**_z(C) : $\underline{z}^TC = \underline{\delta}^T + \mu \underline{z}^TG$ where $\underline{\delta}^T = e^TR$

Decrypting G yields 1

- \circ NAND(C_1,C_2): $G C_1 \cdot B(C_2)$
 - $\mathbf{z}^{\mathsf{T}}C_{1} \cdot \mathsf{B}(C_{2}) = \mathbf{z}^{\mathsf{T}}C_{1} \cdot \mathsf{B}(C_{2}) = (\underline{\delta}_{1}^{\mathsf{T}} + \mu_{1}\mathbf{z}^{\mathsf{T}}\mathsf{G}) \; \mathsf{B}(C_{2})$ $= \underline{\delta}_{1}^{\mathsf{T}}\mathsf{B}(C_{2}) + \mu_{1}\mathbf{z}^{\mathsf{T}}C_{2} = \underline{\delta}^{\mathsf{T}} + \mu_{1}\mu_{2}\mathbf{z}^{\mathsf{T}}\mathsf{G}$ where $\underline{\delta}^{\mathsf{T}} = \underline{\delta}_{1}^{\mathsf{T}}\mathsf{B}(C_{2}) + \mu_{1}\underline{\delta}_{2}^{\mathsf{T}}$ has small entries

Only "left depth" counts, since $\underline{\delta} \leq k \cdot m \cdot \underline{\delta}_1 + \underline{\delta}_2$

In general, error gets multiplied by km. Allows depth ≈ log_{km} q