Fully Homomorphic Encryption Lecture 21

Learning With Errors

Recall

✓ LWE (decision version): (A,A<u>s</u>+<u>e</u>) ≈ (A,<u>r</u>), where A random matrix in A ∈ Z_q^{m×n}, <u>s</u> uniform, <u>e</u> has "small" entries from a Gaussian distribution, and <u>r</u> uniform.

Learning With Errors

Recall

• A pseudorandom matrix $M \in \mathbb{Z}_q^{m \times n'}$ and $\underline{z} \in \mathbb{Z}_q^{n'}$ s.t. entries of $M\underline{z}$ are all small

Gentry-Sahai-Waters

- ${\ensuremath{ \circ }}$ Supports messages $\mu \in \{0,1\}$ and NAND operations up to an a priori bounded depth of NANDs
- Public key $M \in \mathbb{Z}_q^{m \times n}$ and private key \mathbf{z} s.t. $\mathbf{z}^T M$ has small entries
- Enc(μ) = M^TR + μG where R ← {0,1}^{m×km} (and G ∈ Z_q^{n×km} the matrix to reverse bit-decomposition)
- $Dec_z(C) : \mathbf{Z}^T C = \underline{\delta}^T + \mu \mathbf{Z}^T G$ where $\underline{\delta}^T = e^T R$

zecall

• NAND(C_1, C_2) : G - $C_1 \cdot B(C_2)$ (G is a (non-random) encryption of 1)

• $\mathbf{Z}^{\mathsf{T}}C_1 \cdot \mathbf{B}(C_2) = \mathbf{Z}^{\mathsf{T}}C_1 \cdot \mathbf{B}(C_2) = (\underline{\delta}_1^{\mathsf{T}} + \mu_1 \mathbf{Z}^{\mathsf{T}}G) \mathbf{B}(C_2)$ $= \underline{\delta}_1^{\mathsf{T}}\mathbf{B}(C_2) + \mu_1 \mathbf{Z}^{\mathsf{T}}C_2 = \underline{\delta}^{\mathsf{T}} + \mu_1 \mu_2 \mathbf{Z}^{\mathsf{T}}G$ where $\underline{\delta}^{\mathsf{T}} = \underline{\delta}_1^{\mathsf{T}}\mathbf{B}(C_2) + \mu_1 \underline{\delta}_2^{\mathsf{T}}$ has small entries

Only "left depth" counts, since <u>δ</u> ≤ k·m·δ₁ + δ₂

S In general, error gets multiplied by km. Allows depth ≈ log_{km} q

Removing the need for an a priori bound

- Main idea: Can "refresh" the ciphertext to reduce noise
 - Refresh: homomorphically decrypt the given ciphertext under a fresh layer of encryption
 - cf. Degree reduction via share-switching: Homomorphically reconstruct under a fresh layer of sharing
 - But here, the reconstruction operation (i.e., decryption) is not known to the party doing the refresh, because the secret-key is not known
 - Idea: Give an encryption of the secret-key and use homomorphism!
 - Will consider decryption of a given ciphertext as a function applied to the secret-key: D_c(sk) := Dec(C,sk)

Given a ciphertext C and hence the decryption function D_c s.t.
 D_c(sk) := Dec(C,sk)

μ

Also given: an encryption of sk (beware: circularity!)

Goal: a fresh ciphertext with message D_c(sk)

If depth of D_c s.t. D_c(sk) := Dec(C,sk) is strictly less than the depth allowed by the homomorphic encryption scheme, a ciphertext C can be strictly refreshed

 D_{C}

Then can carry out at least one more operation on such ciphertexts (before refreshing again)

μ

 D_{C}

Circularity: Encrypting the secret-key of a scheme under the scheme itself

Can break security in general!

LWE does not by itself imply security

Stronger assumption: "Circular Security of LWE"

Bootstrapping GSW

Supports log(k) depth computation with poly(k) complexity
Need low depth decryption (as a function of secret-key)

- $Dec_z(C) : \underline{z}^T C = \underline{\delta}^T + \mu \underline{z}^T G$ where $\underline{\delta}^T = e^T R$
 - And then check if the result is close to <u>O</u>^T or <u>z</u>^TG
 How?
 - Multiply by B(<u>w</u>) where last coordinate of <u>w</u> is Lq/2 and other coordinates 0

The Has most significant bit = μ (since error $|\varepsilon| \ll q/4$)

Dec_z(C) : MSB(<u>z</u>^TC B(<u>w</u>)). All operations mod q.
 If q were small (poly(k)) this would be small depth (log(k))
 Problem: q is super-polynomial in security parameter k
 Idea: Can change modulus for decryption!

Modulus Switching for GSW • $Dec_z(C)$: MSB($\mathbf{z}^T \mathbf{Y} \ \% \mathbf{q}$), where $\mathbf{Y} = C \ B(\mathbf{w})$ • To switch to a smaller modulus p < q: • Consider Y' = $\lceil (p/q) Y \rfloor$. Let $\triangle = Y' - (p/q) Y$. = ε_1 + μ (p/2) + ap where ε_1 = (p/q) ε_0 + $\mathbf{z}^{\mathsf{T}}\Delta$ • Need $\underline{z}^{\mathsf{T}}\Delta$ to be small. But $\underline{z}^{\mathsf{T}} = [-\underline{s}^{\mathsf{T}} 1]$ for \underline{s} uniform in \mathbb{Z}_q^n . Fix: LWE with small s is as good as with uniform [Exercise] Final bootstrapping: • Given C, let Y' = $\lceil (p/q) C B(\underline{w}) \rfloor$ where p small (poly(k)). Define

Function $D_{Y'}$ which does decryption mod p. Homomorphically evaluate $D_{Y'}$ on encryption of **z** mod p (encryption is mod q).

Other FHE Schemes

- Gentry (2009)
- Brakerski-Vaikuntanathan, Brakerski-Gentry-Vaikuntanathan (2011–12)
- Brakerski and Fan-Vercauteren (2012)
- Gentry-Sahai-Waters (2013)
- Ø ...
- Schemes based on Ring LWE allow <u>batching</u>: encoding multiple messages into a single message, using Chinese Remainder Theorem
 Many of these schemes obtain Levelled FHE without bootstrapping

PKE from LWE

Recall

Ciphertext C = M^T<u>a</u> + <u>m</u>; <u>m</u> encodes the message and <u>a</u> ∈ {0,1}^m
Decryptng: From <u>z</u>^TC = <u>e</u>^T<u>a</u> + <u>z</u>^T<u>m</u> where <u>e</u>^T<u>a</u> is small. To allow decoding from this for, say μ ∈ {0,1}, let <u>z</u>^T<u>m</u> = v ≈ μ(q/2).
Variant: <u>e</u> has (small) <u>even</u> entries and <u>m</u>^T = (0 ... 0 μ). Then (<u>z</u>^TC) % q = μ (mod 2).

BGV Scheme: Overview

- Ciphertext C = $M^T \underline{a} + \underline{m}$; \underline{m} encodes the message and $\underline{a} \in \{0,1\}^m$ • Decryptng: ($\underline{z}^T C \% q$) % 2.
- Already supports homomorphic addition (upto a certain number of levels, determined by q, size of noise and dimension m)
- To support a single homomorphic multiplication, consider moving to a different key (and dimensions) after one multiplication, so that $\underline{\mathbf{z}}_{new}^{T}C \% q = (\underline{\mathbf{z}}^{T}C_{1} \% q) (\underline{\mathbf{z}}^{T}C_{2} \% q) \pmod{2}$
 - Want $\underline{z_{new}}^{T}C \% q \% 2 = (\underline{z}^{T}C_{1} \% q \% 2) (\underline{z}^{T}C_{2} \% q \% 2)$

= $(\mathbf{z}^{\mathsf{T}}C_1)$ $(\mathbf{z}^{\mathsf{T}}C_2)$ % q % 2 (if q even or $\mathbf{z}^{\mathsf{T}}C_i$ % q < \sqrt{q}

 $(\underline{\mathbf{Z}}^{\mathsf{T}}C_1) (\underline{\mathbf{Z}}^{\mathsf{T}}C_2) = \sum_{ij} \mathbf{z}_i C_{1,i} \mathbf{z}_j C_{2,j} = \sum_{ij} (\mathbf{z}_i \cdot \mathbf{z}_j) (C_{1,i} \cdot C_{2,j}).$

So can take $\mathbf{z}_{new} = \mathbf{z} \otimes \mathbf{z}$ and $C = C_1 \otimes C_2$.

BGV Scheme: Overview

- To support a single homomorphic multiplication, let $C = C_1 \otimes C_2$ and move to key $\underline{z_{big}} = \underline{z} \otimes \underline{z}$
- To allow repeated multiplications, need to do dimension reduction (cf. degree reduction in BGW)
 - Will use bit-decomposition operation $B(\cdot)$ and its inverse G
 - To switch from C under \underline{z}_{big} to C' under \underline{z}' , preserving message: Include D = (M' + Enc(\underline{z}_{big}) G) in the public-key, where $\underline{z}'^{T}M' = \underline{e}'^{T}$ has small entries and Enc(\underline{z}_{big}) = [O| \underline{z}_{big}]^T (so that \underline{z}'^{T} Enc(\underline{z}_{big}) = \underline{z}_{big}^{T}).

Switching: let C' = D·B(C). Then z'^TC' = e'^TB(C) + z_{big}^TC.
 Noise kept under control by repeated modulus switching
 Levelled FHE, with lowest level using the highest modulus

FHE in Practice

Several implementations in recent years

- Prominent ones based on schemes of Fan-Vercauteren (FV) and Brakerski-Gentry-Vaikuntanathan (BGV) with various subsequent optimisations
 - BGV implementations: HELib (IBM), Λ o λ
 - FV implementations: SEAL (Microsoft), FV-NFLlib (CryptoExperts), HomomorphicEncryption R Package ...
- Both based on "Ring LWE"
- Moderately fast
 - E.g., HELib can apply AES (encipher/decipher) to about 200 plaintext blocks using an encrypted key in about 20 minutes (a bit faster without bootstrapping, if no need to further compute on the ciphertext)