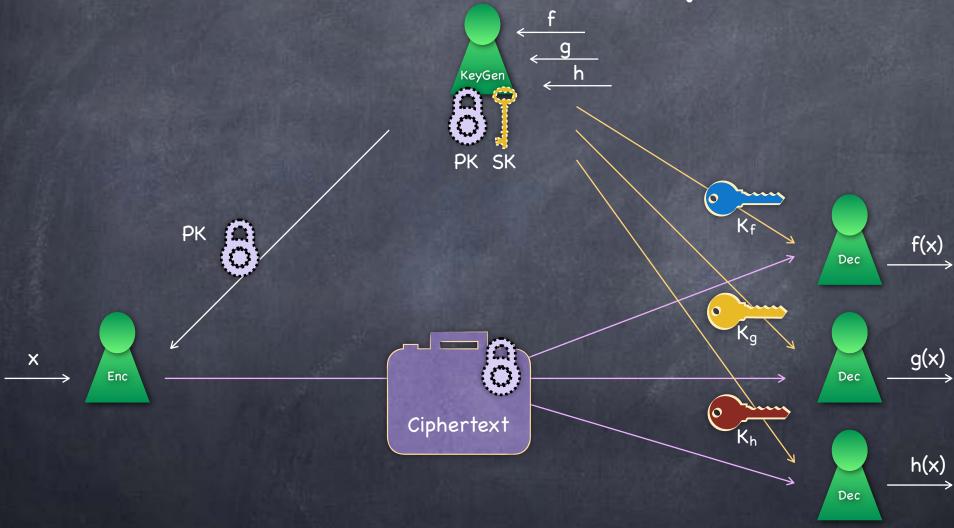
Functional Encryption

Lecture 22

Functional Encryption



Functional Encryption

- Key SK_f allows the decrypting party to learn f(x) from Enc(x)
- cf. FHE, can compute Enc(f(x)) from Enc(x), but cannot decrypt
- The obtaining multiple keys for f, g, h etc. should not let one learn more than f(x), g(x), h(x) etc.
 - Should not allow pooling keys to learn more information

Single-Key FE

- In which key for only one function will be ever be released
 - Function is not known when ciphertexts are created (otherwise trivial [Why?])
- A single-key FE scheme supporting arbitrary functions (with circuits of a priori bounded size)
 - Encryption of x is a Garbled circuit encoding the universal function: F(x,f) = f(x), with x being the garbler's input
 - Plus, 2n encrypted wire labels for the n input wires of f (using 2n public-keys in the master public-key)
 - Key for f: n secret-keys corresponding to the n bits of f
 - \circ Can decrypt the labels of $f \rightarrow can$ evaluate F(x,f)

No Unbounded Sim-FE

- Suppose we require simulation-based security for FE
- Then there are function families which have no FE scheme that supports releasing an <u>unbounded</u> number of keys
- e.g., The message x is the seed of a PRF. The function f_z evaluates the PRF on the input z: $f_z(x) = PRF_x(z)$.

 - Simulation should encode them into an (LN+L'N)-bit string (i.e., the simulated ciphertexts and keys)
 - If Nk >> L+L', not possible for truly random strings, and hence for pseudorandom strings too (even if simulator knows all z_i and all N²k bits, but not any x_j , a priori)

Indistinguishability-Based FE

- (Weaker) Security definitions using a game between an adversary and a challenger
- Challenger gets (PK,SK) ← KeyGen, and gives PK to Adv
- Adv can ask for SK_f for any number of f of its choice
- Adv sends (m₀,m₁) to Challenger
- Adv outputs b' (as a guess for b)
- Security: ∀ PPT Adv, Pr[b'=b] ≈ ½
- Selective security: Adversary has to send (m₀,m₁) at first (before KeyGen is run)

Index-Payload Functions

- Message $x=(\alpha,m)$, and functions f_{π} s.t. $f_{\pi}(x)=(\alpha, m \text{ iff } \pi(\alpha)=1)$
 - α is the index which is <u>public</u>, and m is output iff π(α)=1, where π is a predicate
 - Identity-Based Encryption (IBE): $\pi_{\beta}(\alpha) = 1$ iff $\alpha = \beta$
 - Attribute-Based Encryption (ABE)
 - **Solean** Variables $\alpha \in \{0,1\}^n$ and π a circuit (policy) over n
 - © Ciphertext-Policy ABE: α a circuit (policy) over n Boolean variables, and π evaluates an input circuit on a fixed assignment
- Predicate Encryption: $x=(\alpha,m)$ and function f_{π} contains a predicate π s.t. $f_{\pi}(x) = m$ iff $\pi(\alpha)=1$ (\bot otherwise).
 - \bullet Note: Not public-index, as α remains hidden

Identity-Based Encryption

- Identity-Based Encryption: $f_β(α,m) = (α,m)$ iff α=β (else (α, ⊥))
- Useful as a public-key encryption scheme within an enterprise
- A key-server (with a master secret-key MSK and a master public-key PK) that can generate SK_{ID} for any given ID
 - Encryption will use PK, and the receiver's ID (e.g., email)
 - Receiver has to obtain SK_{ID} from the key-server

IBE from Pairing

• MPK: g,h, Y=e(g,h)^y,
$$\pi$$
 = (u,u₁,...,u_n)
$$\pi(ID) = u \Pi u_i$$

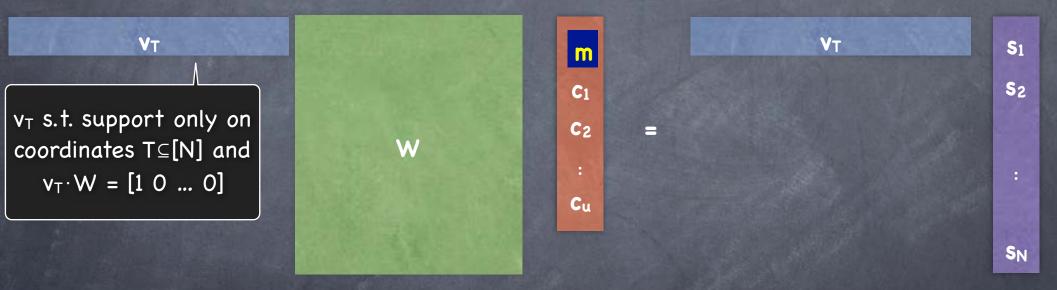
- MSK: hy
- \bullet Enc(m;ID) = (g^r, π (ID)^r, m.Y^r)
- SK for ID: $(g^{\dagger}, h^{\gamma}.\pi(ID)^{\dagger}) = (d_1, d_2)$
- Dec (a, b, c; d_1 , d_2) = c/[$e(a,d_2)$ / $e(b,d_1)$]
- Full security based on Decisional-BDH

ABE schemes

- Easy solution for Single-Key CP-ABE, using secret-sharing
- The policy defines an access structure over the set of attributes
 - Secret-share the message for this access structure, and encrypt individual shares using attribute-specific keys PK_a
 - Key for an attribute set A, $SK_A = \{ SK_a | a \in A \}$
 - Note: cannot issue SKA and SKA as it allows computing SKAUA
- Will see how to use bilinear pairings for CP/KP-ABE to allow multiple keys when restricted to "linear policies"
 - Linear policies (a.k.a. Monotone Span Programs): the access structure (which sets of attributes allow decryption) is the access structure for a linear secret-sharing scheme

Linear Secret-Sharing

Reconstruct($\sigma_{i_1},...,\sigma_{i_t}$): pool together available coordinates $T\subseteq [N]$. Can reconstruct if there are enough equations to solve for m.



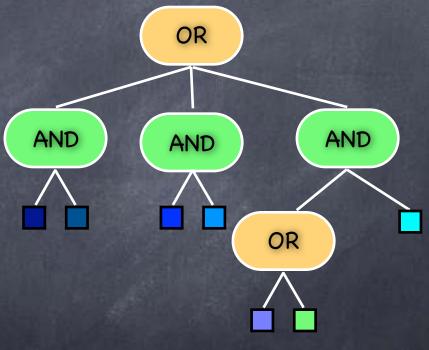
- © Can work with any non-zero target vector $\underline{\mathbf{a}}$ instead of [1 0 ... 0] (by encoding m into $\underline{\mathbf{c}}$ so that $\langle \underline{\mathbf{a}},\underline{\mathbf{c}}\rangle = \mathbf{m}$)
 - [Exercise] An access structure has a linear secret-sharing scheme using [1 0 ... 0] iff it has one with vector <u>a</u> (for any vector <u>a</u> ≠0)

Example of a Linear Policy

Consider this policy, over 7 attributes

W (with target vector [1 1 1 1]):

0	1	1	1
1	0	0	0
1	1	0	1
0	0	1	0
1	1	1	0
1	1	1	0
0	0	0	1



Can generalize AND/OR to threshold gates

KP-ABE For Linear Policies

- PK: g, Y=e(g,g)y, T = (g^{t1},..., g^{tn}) (n attributes)
- MSK: y and t_a for each attribute a
- Enc(m,A;s) = (A, $\{T_a^s\}_{a\in A}$, m.Ys)
- SK for policy W (with n rows): Let $u=(u_1 \dots u_n)$ s.t. Σ_a $u_a = y$. For each row a, let $x_a = \langle W_a, u \rangle / t_a$. Let Key $X = \{ g^{x_a} \}_{a \in [n]}$
- Dec ($(A,\{Z_a\}_{a\in A},C)$; $\{X_a\}_{a\in [n]}$): Get $Y^s=\prod_{a\in A}e(Z_a,X_i)^{v_a}$ where $v=[v_1 \dots v_n]$ s.t. $v_a=0$ if $a\not\in A$, and vW=[1...1]. Recover m as C/Y^s .
- A random vector u for each key to prevent collusion
- Selective (attribute) security based on Decisional-BDH

CP-ABE For Linear Policies

- PK: g, Y=e(g,g)y, Q=gq, $(T_1,...,T_n) = (g^{\dagger_1},...,g^{\dagger_n})$ (n attributes)
- MSK: g^y
- Enc(m,W;s,r₁,...,r_n) = (W, {Q^{σ_a} T_a^{-r_a}, g^{r_a} }_{a∈[n]}, g^s, m.Y^s) where (σ_1 ,..., σ_n) is a secret-sharing of s for access structure W
- SK for attribute set A: Let u be random. $SK_A = (K,L,\{K_a\}_{a \in A})$ where $K=g^y.Q^u$, $L=g^u$, $K_a = T_a^u$
- Dec ((W,{Z_a,R_a}_{a∈A},S,C); (K,L,{ K_a}_{a∈A})) : Get Y^s as $e(S,K)/ \prod_{a∈A} [e(Z_a,L) \cdot e(R_a,K_a)]^{v_a} \text{ where } v = [v_1 ... v_n] \text{ s.t. } v_a=0 \text{ if } a \not\in A, \text{ and } v \not\subseteq s. \text{ Then } m = C/Y^s$
- Note: a random u for each key to prevent collusion
- Selective (attribute) security under strong assumptions

Beyond Linear Policies

- Policy given as an arithmetic circuit $f: \mathbb{Z}_q^+ \to \mathbb{Z}_q$ and a target value z. Policy satisfied by attribute set α iff $f(\alpha) = z$.
- Very expressive policy ⇒ no conceptual distinction between CP-ABE and KP-ABE
 - © Can implement CP-ABE also as KP-ABE: α encodes a policy (as bits representing a circuit) and f implements evaluating this policy on attributes hardwired into it
- Next time: ABE for general functions from LWE