Functional Encryption

Lecture 23
ABE from LWE

Functional Encryption

ABE: x = (a,m)
Frz(X) = (o, m iff f(a)=2)

F etc. adaptively chosen by
adversary. Need F(x3) = F(x?) etc.
ABE: of = of = «* and
. Fez st f(o®) 2 2

=

ABE: x = (a,m)
Frz(X) = (o, m iff f(a)=2)

Functional Encrypti
Selective Security

olf

Selective: (x%, x¥)
output before PK

ABE: Only «* is
output initially

ABE: x = (a,m)
Frz(X) = (o, m iff f(a)=2)

Today: ABE From LWE

@ Policy given as an arithmetic circuit f: Z,t — Z4 and a value z.
Key SK¢, decrypts ciphertext with attribute o iff f(«) = z.

@ Very expressive policy = no conceptual distinction between

CP-ABE and KP-ABE

@ Can implement CP-ABE also as KP-ABE: « encodes a policy (as

bits representing a circuit) and f implements evaluating this
policy on attributes hardwired into it

ABE From IBE?

@ Policy is (f,z) where f comes from a very large function family
@ But instead suppose we had a small number of functions f
@ Then enough to have a set of IBE instances one for each f

@ PK = { K¢ } one for each f

® SKfz = SK for ID z under scheme for f

a Encex(o,m) = (e, { Encie(m;fe)) ¥¢)

@ At a high level, will emulate this idea. But instead of listing K¢ and
Enck{m;f(«)) for each f, will include elements from which any of

them can be constructed at the time of decryption

@ Key Homomorphism (BGGHNSVV'14)

Key-Homomorphism

@ Overview:
® Suppose each attribute o has t bits, and f given as a circuit
@ Public key K¢ constructed from PK = { Kj iz, ¢t

@ Ciphertext Enck{m;f(x)) would be of the form
(Qt5)(s), mask(s)+m) where s is randomly chosen

@ Qrf)(s) can be constructed from { Qi.(s) }iz,..+ (Which is
included in the actual ciphertext)

® SKfz can extract mask(s) from Qg(s)

ABE From LWE

(f.2) 3
@i |
KeyGen pK Eval F
PK = (Kl,...,K’r,Kmask) Ill TK’r

Q¢(s) into Mask(s;Kmask)

\

/ SK¢z can transform

CT = [o, Quoy(S)seees Qis(S), QF (x)
m + MGSK(SJKmask)] T
- Ev = e Dv CTEvals
3 Ll ! |
If f(o)=z, decode Qs I

using SK¢z to get
Mask(s;Kmask)

ABE From LWE

@ PK: Ki=[Ao | Ai] and Kmask = D, where Ao, Ai — Adqmm, D <« Agmd

@ m >> n log q so that Ar is statistically close to uniform even

when r has small entries (e.g., bits)
@ Fact: Can pick A along with a trapdoor Ta (a "good” basis for the

lattice Lat) so that, given for any u € Zy", one can use Ta tfo

sample r with small Z, entries (from a discrete Gaussian) that

satisfies Ar = u
@ = sample R with small entries so that AR=D for D € Z,»d

@ = can sample such an R so that [A | B]R = D, for any B

@ Need [A|B][Ri|Rz]" =D. Sample Rz. Then use Ta to
sample R;T s.1. AR;T = D - BR.T

@ MSK: Trapdoor Ta,

ABE From LWE

Underlying IBE

PK: K = [Ao | A] and Kmask = D, where Ao, A < Z»m, D < Z nxd
and MSK: Trapdoor Ta, [Used for key-homomorphism. Not needed for IBE]

\
For an identity z € Z, let KEHz denote [Ao | A + zG], where G is
the matrix to invert bit decomposition

Enc(m;z) = (Qu(s), mask(s) + | q/2| m) where Q,(s) » (KEz)'s and
mask(s) = DTs. Here = stands for adding a small noise (as in LWE)

SKz: R, with small entries s.t. (KBz) R, = D (computed using Ta,)

Decryption: R.T-Q,(s) ~ mask(s). Recover m e {0,1}<.

ABE From LWE

PK: Ki = [Ao | Ai] and Knask = D, where A, A; < dgmm, D «— Agmd
and MSK: Trapdoor Ta,

Ke = [Ao | Ar] where As = PKEval(f Ay,...,At) (To be described)

Qi.;(8) = (KiBai)Ts where s < Z". (Across all i, same noise used

for Ao's part.)

Include mask(s) + | q/2| m in ciphertext, where mask(s) = DTs.
Q#,f(2)(8) = CTEval(f,o,Q1,44(8).... Qt.4(8)) = (KeEBf(e))'s (To be described)
SK¢z: Compute K¢. Use Ta, to get R¢z s.t. (K¢Bz) Re, = D

Decryption: If f(x)=z, then R¢.T-Qf,f)(S) = DTs. Recover m € {0,1}d.

ABE From LWE

@ Ke=[Ao | Ar] where At = PKEval(f A,...,At+) (To be described)
@ Qff(.)(8) = CTEval(f,o,Q1,4/(8)....Qt04(8)) = (KeEF(x))Ts (To be described)
@ CTEval computed gate-by-gate

@ Enough to describe CTEval(fi+f2, (z1,22), Qf2/(S), Qf,2,(8)) and

CTEval(fi- f2, (z1,z2), Qf,z/(S), Qf,z,(8))
d Recall QF1,21(§) 0 (KF1EE|21)T§ = [AO I AFI + 2,G]T§
@ Keep = AoTs aside. To compute [Aqs,.f,) + g(21,22)G ITs for g=+,

o [Ar+ziG s + [Ae, 422G ITs = [Arur, + (21 + 22) G I's with

As+f, = A + As, (errors add up) W
@

z; - [An+ziG ITs - B(Af)T [Ar+z2G JTs = [-AFZB(Aﬁ) + 212,G]'s

@ err = zz-err; + B(Af)Terrz. Need z; to be small.

d

d

d

ABE From LWE

Security?

Sanity check: Is it secure when no function keys SK¢, are given to
the adversary?

Security from LWE

@ All components in the ciphertext are LWE samples of the form
(a,8)+noise, for the same s and random a.

@ Hence all pseudorandom, including the mask DTs + noise
Do the secret keys SK¢, make it easier to break security?

Claim: No!

ABE From LWE

@ Scheme is selective-secure (under LWE)

@ Recall selective security for ABE:
Adversary first outputs «* first, before seeing PK.
Then obtains keys SK¢, for Fi, s.t. f(a*) # z.
Gives xo* = («*\mo) and x,* = («*,m;) and gets challenge Enc(x*y).

@ Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SK¢, for all f and

all z # (o)

@ Breaking encryption for «* will still need breaking LWE!

ABE From LWE

@ Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SK¢, for all (f,z)
s.t. z # (o)

@ D, Ao as before but without trapdoor (i.e., given from outside)

@ Other keys Ai are (differently) trapdoored: Ai* = AoSi - «*iG
where S; have small entries

@ AoSi close to uniform (like Ai) by extraction argument
@ Consider a query (f,z) where z # f(a*) =: 2*

® Need to give R¢; s.t. (KfEHz) Rez = D

@ Do not have a the trapdoor for K¢ = [Ao | Ar - 2*G]

@ Will use a trapdoor for As - z*G instead!

Two Trapdoors

@ Given Ap, B € Z;™™ of rank n, and D, can find small R s.t.
[Ao | B]R =D if we hav? a “small” basis Ta, for Ala,]

@ Either the trapdoor Ta, for sampling small Ro s.1. AoRp = U

@ Or (S,Ts-a,s) S.1. B - AoS has full rank and S “small”

@ E.g., small S s.t. B =AS + 2'G for 2’ # 0 and G has a known
trapdoor Te (which is also a trapdoor for z'G)

@ In the actual construction, we used the fact that (Ao, Ta,) can be

generated together, to be able to give out function keys Rg..
(Ai picked randomly, resulting in random Ag.)

@ In the security proof, given an Ao from outside, will construct
A% = ApSi - oG and maintain At = ApSt - f(o*)G. Then, if z # f(«*)
and so B = A“+2G = AoSt + 2'G for z' = z-f(«*) # 0, can sample Rg..

Simulation of Keys

@ Simulated KeyGen (given «*) produces keys which are statistically
close to the original keys

@ Public Key: Accepts Ao from outside. Picks A = AoSi - o*iG
where Si have small entries.

@ For each f, Af* defined by EvalPK: Af* = AoSr - f(«*)G
@ Function Keys: Given (f,z) s.t. z # f(«*), Rez s.t. (K*Bz) R, = D.
@ AEz = [Ao | AF* + 2G] = [Ao | AoSt - F(0*)G + zG]
= [Ao | AoSs + Z'G] where z'#0
@ S¢ remains small (assuming f2(«*) is small in products fi-f in
the circuit for computing f(«*))

@ So can sample small R¢; as required (type 2 trapdoor)

@ Simulated keys are statistically indistinguishable from the keys in
the real experiment

Simulation of Ciphertext

@ Accepts = ApTs and = DTs from outside, and produces a ciphertext
(corresponding to the given s, but without knowing s)

@ Need Qi.*(s) = (K*iBa*:)"s and mask(s) = DTs
@ For Qi.i(s), need = (A + o*iG)Ts = (A0Si))Ts = SiTAOTS.
Can derive this from = AoTs and S; (SiT-noise is fresh noise)
@ Simulated Q;.*{(s) and mask(s) are statistically indistinguishable
from the real experiment (conditioned on the keys)
@ But if = AoTs and = DTs are replaced by random vectors, then:
@ No information about the message (because random mask)

@ Indistinguishable from the simulation above (by LWE)

@ In turn statistically indistinguishable from the real
experiment

