
Functional Encryption
Lecture 23

ABE from LWE

Functional Encryption

 

 

Enc

KeyGen

 

 

Dec

 

 

Dec

 

 

Dec

PK

Ciphertext

SKG

x G(x)

G
F

H

SKF

SKG

H(x)

F(x)

PK SK

ABE: x = (α,m)  
 Ff,z(x) = (α, m iff f(α)=z)

Functional Encryption

 

 

Enc

KeyGen

 

 

Dec

 

 

Dec

 

 

Dec

PK

Ciphertext

SKG

b’

G
F

H

SKF

SKG

PK SK

Security

x*0,x*1

x*b

F etc. adaptively chosen by
adversary. Need F(x*0) = F(x*1) etc.  

 

PK

ABE: α*0 = α*1 = α*, and  
 Ff,z s.t. f(α*) ≠ z

ABE: x = (α,m)  
 Ff,z(x) = (α, m iff f(α)=z)

Selective: (x*0, x*1)
output before PK

Functional Encryption

 

 

Enc

KeyGen

 

 

Dec

 

 

Dec

 

 

Dec

PK

Ciphertext

SKG

b’

G
F

H

SKF

SKG

PK SK

Selective Security

x*0,x*1

x*b

PK

ABE: Only α* is
output initially

ABE: x = (α,m)  
 Ff,z(x) = (α, m iff f(α)=z)

Today: ABE From LWE

Policy given as an arithmetic circuit f: Zqt → Zq and a value z.  

Key SKf,z decrypts ciphertext with attribute α iff f(α) = z.

Very expressive policy ⇒ no conceptual distinction between  

CP-ABE and KP-ABE

Can implement CP-ABE also as KP-ABE: α encodes a policy (as
bits representing a circuit) and f implements evaluating this
policy on attributes hardwired into it

ABE From IBE?
Policy is (f,z) where f comes from a very large function family

But instead suppose we had a small number of functions f

Then enough to have a set of IBE instances one for each f

PK = { Kf } one for each f

SKf,z = SK for ID z under scheme for f

EncPK(α,m) = (α, { EncKf(m;f(α)) }f)

At a high level, will emulate this idea. But instead of listing Kf and
EncKf(m;f(α)) for each f, will include elements from which any of

them can be constructed at the time of decryption

Key Homomorphism (BGGHNSVV’14)

Key-Homomorphism

Overview:

Suppose each attribute α has t bits, and f given as a circuit

Public key Kf constructed from PK = { Ki }i=1,…,t

Ciphertext EncKf(m;f(α)) would be of the form  

(Qf,f(α)(s), mask(s)+m) where s is randomly chosen

Qf,f(α)(s) can be constructed from { Qi,αi(s) }i=1,…,t (which is
included in the actual ciphertext)

SKf,z can extract mask(s) from Qf,z(s)

ABE From LWE

 

 

Enc

KeyGen

 

 

Dec
(α,m)

If f(α)=z, decode Qf,f(α) 
using SKf,z to get  
Mask(s;Kmask)

SKf,z can transform 

Qf,z(s) into Mask(s;Kmask)

CT = [α, Q1,α1(s),…, Qt,αt(s),  

 m + Mask(s;Kmask)]

(f,z)

PK = (K1,…,Kt,Kmask)
K1 … Kt

PKEvalf

Kf

Q1,α1 … Qt,αt

CTEvalf

Qf,f(α)

PK: Ki = [A0 | Ai] and Kmask = D, where A0, Ai ← Zqn×m, D ← Zqn×d

m >> n log q so that Ar is statistically close to uniform even

when r has small entries (e.g., bits)

Fact: Can pick A along with a trapdoor TA (a “good” basis for the

lattice LA⊥) so that, given for any u ∈ Zqn, one can use TA to

sample r with small Zq entries (from a discrete Gaussian) that

satisfies Ar = u

⇒ sample R with small entries so that AR=D for D ∈ Zqn×d

⇒ can sample such an R so that [A | B]R = D, for any B

Need [A | B] [R1 | R2]T = D. Sample R2. Then use TA to
sample R1T s.t. AR1T = D - BR2T

MSK: Trapdoor TA0

ABE From LWE

PK: K = [A0 | A] and Kmask = D, where A0, A ← Zqn×m, D ← Zqn×d 

and MSK: Trapdoor TA0

For an identity z ∈ Zq let K⊞z denote [A0 | A + zG], where G is

the matrix to invert bit decomposition

Enc(m;z) = (Qz(s), mask(s) + ⌊q/2⌋ m) where Qz(s) ≈ (K⊞z)Ts and

mask(s) ≈ DTs. Here ≈ stands for adding a small noise (as in LWE)

SKz: Rz with small entries s.t. (K⊞z) Rz = D (computed using TA0)

Decryption: RzT⋅Qz(s) ≈ mask(s). Recover m ∈ {0,1}d.

ABE From LWE
Underlying IBE

Used for key-homomorphism. Not needed for IBE

PK: Ki = [A0 | Ai] and Kmask = D, where A, Ai ← Zqn×m, D ← Zqn×d 

and MSK: Trapdoor TA0

Kf = [A0 | Af] where Af = PKEval(f,A1,…,At) (To be described)

Qi,αi(s) ≈ (Ki⊞αi)Ts where s ← Zqn. (Across all i, same noise used

for A0Ts part.)

Include mask(s) + ⌊q/2⌋ m in ciphertext, where mask(s) ≈ DTs.

Qf,f(α)(s) = CTEval(f,α,Q1,α1(s)…,Qt,αt(s)) ≈ (Kf⊞f(α))Ts (To be described)

SKf,z: Compute Kf. Use TA0 to get Rf,z s.t. (Kf⊞z) Rf,z = D

Decryption: If f(α)=z, then Rf,zT⋅Qf,f(α)(s) ≈ DTs. Recover m ∈ {0,1}d.

ABE From LWE

Af1⋅f2

ABE From LWE
Kf = [A0 | Af] where Af = PKEval(f,A1,…,At) (To be described)

Qf,f(α)(s) = CTEval(f,α,Q1,α1(s)…,Qt,αt(s)) ≈ (Kf⊞f(α))Ts (To be described)

CTEval computed gate-by-gate

Enough to describe CTEval(f1+f2, (z1,z2), Qf1,z1(s), Qf2,z2(s)) and

CTEval(f1⋅f2, (z1,z2), Qf1,z1(s), Qf2,z2(s))

Recall Qf1,z1(s) ≈ (Kf1⊞z1)Ts = [A0 | Af1 + z1G]Ts

Keep ≈ A0Ts aside. To compute [Ag(f1,f2) + g(z1,z2)G]Ts for g=+,⋅

[Af1+z1G]Ts + [Af2+z2G]Ts = [Af1+f2 + (z1 + z2) G]Ts with  

Af1+f2 = Af1 + Af2 (errors add up)

z2 ⋅ [Af1+z1G]Ts - B(Af1)T [Af2+z2G]Ts = [-Af2B(Af1) + z1z2G]Ts

err = z2⋅err1 + B(Af1)Terr2. Need z2 to be small.

ABE From LWE

Security?

Sanity check: Is it secure when no function keys SKf,z are given to
the adversary?

Security from LWE

All components in the ciphertext are LWE samples of the form

⟨a,s⟩+noise, for the same s and random a.

Hence all pseudorandom, including the mask DTs + noise

Do the secret keys SKf,z make it easier to break security?

Claim: No!

ABE From LWE

Scheme is selective-secure (under LWE)

Recall selective security for ABE:  
Adversary first outputs α* first, before seeing PK.  
Then obtains keys SKf,z for Ff,z s.t. f(α*) ≠ z.  
Gives x0* = (α*,m0) and x1* = (α*,m1) and gets challenge Enc(x*b).

Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SKf,z for all f and
all z ≠ f(α*)

Breaking encryption for α* will still need breaking LWE!

ABE From LWE

Simulated execution (indistinguishable from real) where PK* is
designed such that without MSK* can generate SKf,z for all (f,z)
s.t. z ≠ f(α*)

D, A0 as before but without trapdoor (i.e., given from outside)

Other keys Ai are (differently) trapdoored: Ai* = A0Si - α*iG
where Si have small entries

A0Si close to uniform (like Ai) by extraction argument

Consider a query (f,z) where z ≠ f(α*) =: z*

Need to give Rf,z s.t. (Kf⊞z) Rf,z = D

Do not have a the trapdoor for Kf = [A0 | Af - z*G]

Will use a trapdoor for Af - z*G instead!

Two Trapdoors
Given A0, B ∈ Zqn×m of rank n, and D, can find small R s.t.  

[A0 | B] R = D if we have:

Either the trapdoor TA0 for sampling small R0 s.t. A0R0 = U

Or (S,TB-A0S) s.t. B - A0S has full rank and S “small”

E.g., small S s.t. B = A0S + z’G for z’ ≠ 0 and G has a known
trapdoor TG (which is also a trapdoor for z’G)

In the actual construction, we used the fact that (A0, TA0) can be
generated together, to be able to give out function keys Rf,z.  
(Ai picked randomly, resulting in random Af.)

In the security proof, given an A0 from outside, will construct  
A*i = A0Si - αi*G and maintain A*f = A0Sf - f(α*)G. Then, if z ≠ f(α*)
and so B = A*f+zG = A0Sf + z’G for z’ = z-f(α*) ≠ 0, can sample Rf,z.

a “small” basis TA0 for Λ⊥A0

Simulation of Keys
Simulated KeyGen (given α*) produces keys which are statistically
close to the original keys

Public Key: Accepts A0 from outside. Picks Ai* = A0Si - α*iG
where Si have small entries.

For each f, Af* defined by EvalPK: Af* = A0Sf - f(α*)G

Function Keys: Given (f,z) s.t. z ≠ f(α*), Rf,z s.t. (Kf*⊞z) Rf,z = D.

Af*⊞z = [A0 | Af* + zG] = [A0 | A0Sf - f(α*)G + zG]  

 = [A0 | A0Sf + z’G] where z’≠0

Sf remains small (assuming f2(α*) is small in products f1⋅f2 in

the circuit for computing f(α*))

So can sample small Rf,z as required (type 2 trapdoor)

Simulated keys are statistically indistinguishable from the keys in
the real experiment

Simulation of Ciphertext
Accepts ≈ A0Ts and ≈ DTs from outside, and produces a ciphertext

(corresponding to the given s, but without knowing s)

Need Qi,α*i(s) ≈ (K*i⊞α*i)Ts and mask(s) ≈ DTs

For Qi,α*i(s), need ≈ (Ai* + α*iG)Ts = (A0Si)Ts = SiTA0Ts.  

Can derive this from ≈ A0Ts and Si (SiT⋅noise is fresh noise)

Simulated Qi,α*i(s) and mask(s) are statistically indistinguishable
from the real experiment (conditioned on the keys)

But if ≈ A0Ts and ≈ DTs are replaced by random vectors, then:

No information about the message (because random mask)

Indistinguishable from the simulation above (by LWE)

In turn statistically indistinguishable from the real
experiment

