
Obfuscation
Lecture 24

Obfuscation
The art & science of making programs “unintelligible” 
 

 

 

 

 

 

 

The program should be fully functional

It may contain secrets that shouldn’t be revealed to the
users (e.g., signature keys) — any more than executing it
reveals

#define _ -F<00||--F-OO--;
int F=00,OO=00;main(){F_OO();printf("%1.3f\n",4.*-F/OO/OO);}F_OO()
{
 --_-_
 --_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_
 --_-_
}  
from International Obfuscated C Code Contest 1988 (via Wikipedia)

Obfuscation

For protecting proprietary algorithms, for crippling functionality
(until license bought), for hiding potential bugs, for hardwiring
cryptographic keys into apps, for reducing the need for
interaction with a trusted server (say for auditing purposes), …

Several heuristic approaches to obfuscation exist

All break down against serious program analysis

Cryptographic Obfuscation
Obfuscation using cryptography?

Need to define a security notion

Constructions which meet the definition under
computational hardness assumptions

Cryptography using obfuscation

If realized, obfuscation can be used to instantiate various
other powerful cryptographic primitives

Example: PKE from SKE. Obfuscate the SKE encryption
program with the key hardwired (plus a PRF for generating
randomness from the plaintext), and release as public-key

Or FE: Encrypt message x with a CCA-secure PKE.
Function key SKf is a program that decrypts, computes
f(x) and outputs it.

Note: Considers only corrupt receiver

f ∈ Family

Defining Obfuscation: First Try

Env
REAL

Env

IDEAL

FB

Too strong! Requires family to be

learnable from black-box access

f

Secure (and
correct) if:

∀

 

output of
is distributed
identically in
REAL and IDEAL

O(f)x1

f(x1)
x2

f(x2)
:

∀

∃ s.t.

O(f)O*f ∈ Family

Note: Considers only corrupt receiver

f ∈ Family

Defining Obfuscation: First Try

Env
REAL

Env

IDEAL

FB

f

Secure (and
correct) if:

∀

 

output of
is distributed
identically in
REAL and IDEAL

O(f)x1

f(x1)
x2

f(x2)
:

∀

∃ s.t.

bbf ∈ Family

Virtual 

Black-Box 

(VBB)  

Obfuscation

A
single
bit

Impossibility of Obfuscation
VBB obfuscation is impossible in general

Explicit example of an unobfuscatable function family

Idea: program which when fed its own code (even
obfuscated) as input, outputs secrets

Programs Pα,β with secret strings α and β:

If input is of the form (0,α) output β

If input is of the form (1,P) for a program P, run P with
input (0,α) and if it outputs β, output (α,β)

When Pα,β is run on its own (obfuscated) code, it outputs
(α,β). Can learn, e.g., first bit of α. In the ideal world, need
to guess!

Possibility of Obfuscation
Hardware assisted

For simple function families

e.g., Point functions (from perfectly one-way permutations)

But general “low complexity classes” are still unobfuscatable
(under cryptographic assumptions)

In idealized models (random oracle model, generic group model,
etc.)

For weaker definitions

Obfuscation constructions need a suitable representation of the
function

x

f(x)

Matrix Programs
f : {0,1}n → {0,1} using a set of 2N w×w matrices (N = poly(n))

M10 M20 M30 … MN0

M11 M21 M31 … MN1

M10 M21 M30 MN1

0 1 0 1

Product = I or A?

Barrington’s Theorem: “Shallow” circuits (NC1 functions) have  
polynomial-sized matrix programs (with 5x5 matrices)

Matrix Programs
Idea: Encode matrices s.t. only valid matrix multiplications and final
check (I or A?) can be carried out (for any x)

No other information about the 2N matrices should be deducible

M10 M20 M30 … MN0

M11 M21 M31 … MN1

M10 M21

0 1 0

M30 MN1

1

Product = I or A?

x

f(x)

Obfuscation from  

Multi-Linear Map
Such encodings are known using “multi-linear maps”

Using generic model multi-linear map, this yields Virtual
Black-Box obfuscation for polynomial-sized matrix programs

And hence for NC1 circuits from Barrington’s theorem.
Can “bootstrap” to all polynomial-sized circuits/
polynomial-time computable functions, assuming Fully
Homomorphic Encryption with decryption in NC1

Instantiating obfuscation constructions using concrete
hardness assumptions on these candidates yields weaker
flavours of obfuscation (coming up)

Several candidate multi-linear maps proposed [GGH’13, CLT’13,…]

Initial candidates broken…

Flavours of Obfuscation

Indistinguishability Obf.

PC Differing Inputs Obf.

Differing Inputs Obf.

VBB Obf.

VGB Obf.

XIO

Adaptive DIO

IND-PRE Security

REAL
IDEAL

FB

 is IDEAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

C0, C1

Cbb b’O(Cb)

aux

C0, C1

Cbb b’

aux

Different variants of the definition in this framework

IND-PRE secure if ∀ PPT in Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

Typically C0, C1 given to the adversary (part of aux)

Indistinguishability Obf. (iO)

REAL
IDEAL

FB

C0, C1

Cbb b’O(Cb)

aux

C0, C1

Cbb b’

aux

Test picks functionally equivalent C0, C1 (hardwired into it)

Guaranteed to be IDEAL-hiding

iO if ∀ PPT in iO Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

 is IDEAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

Differing Input Obf.

REAL
IDEAL

FB

C0, C1

Cbb b’O(Cb)

aux

C0, C1

Cbb b’

aux

C0, C1 need not be functionally equivalent

To be not IDEAL-hiding, need a PPT which can find a “differing input”

DIO if ∀ PPT in DIO Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

 is IDEAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

Adaptive DIO
allows 2-way
interaction

Public-Coin DIO

REAL
IDEAL

FB

C0, C1

Cbb b’O(Cb)

aux

C0, C1

Cbb b’

aux

Test as in DIO, but aux includes all the randomness used by Test

PC-DIO if ∀ PPT in PC-DIO Test-Family 
 IDEAL-hiding ⇒ REAL-hiding

 is IDEAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

Virtual Grey Box Obf.

REAL
IDEAL

FB

Cb b’O(C)

aux

Cb b’

aux

Arbitrary PPT Test, with arbitrary aux (C0, C1 not necessarily included).

Allow computationally unbounded adversaries in the ideal world.

VGB Obf. if ∀ PPT in VGB Test-Family 
 IDEAL-hiding statistically ⇒ REAL-hiding

 is IDEAL-Hiding if

∀ Pr[b’=b] = ½ ± negl.

 is REAL-Hiding if

∀ PPT Pr[b’=b] = ½ ± negl.

Original definition is simulation-
based a la VBB Obfuscation

Inefficient iO

Write down the truth table of the function! But not efficient.

Better solution: Find a canonical circuit for the given circuit (e.g.,
smallest, lexicographically first)

Meets every requirement except that of the obfuscator being
efficient

Fact: Can find the canonical circuit in polynomial time if P=NP

i.e., P=NP ⇒ iO (with efficient obfuscator) exists

Cannot rule out the possibility that iO exists but there is no
OWF (say), unless we prove P≠NP

XIO: Allows
inefficient evaluation,
slightly better than

truth table

Best-Possible Obfuscation

iO as good at hiding information as any (perfectly correct)
obfuscation

(aux,iO(O(P))) ≈ (aux,iO(P)), where O is any compiler that
perfectly preserves functionality

i.e., Any information that can be efficiently learned from
(aux,iO(P)) can be efficiently learned from (aux,iO(O(P)))

In turn, efficiently learned from (aux,O(P))

Note: Only holds when iO is efficient (so not applicable to
the canonical encoding construction)

Is iO Any Good?

iO does not promise to hide anything about the function
(only its representation)

Can we use iO in cryptographic constructions?

Yes (combined with other cryptographic primitives)

e.g. PKE from SKE using iO

In fact, can get FE (from PKE and NIZK) using iO

Recent results: iO “essentially” equivalent to FE for
general functions (note: FE doesn’t hide function)

With
different
levels of
security

Implausibility of DIO?
Is DIO (im)possible?

Open

Constructions from multi-linear maps under strong (or idealized)
assumptions

Implausibility results

If highly secure (“sub-exponentially secure”) one-way
functions exist, then highly secure DIO for Turing machines
cannot exist!

Problem is the auxiliary information

Let aux be an obfuscated program which can extract secrets
from the obfuscated program. But in the ideal world, aux
would be useless (as it is obfuscated).

Today

Obfuscation

Strong definitions are provably impossible to achieve

Recent breakthroughs (for weaker definitions)

Using Multi-linear Maps

Still being cryptanalyzed

