
Miscellany

Lecture 25

Using iO: Examples

Shallow Computation: Why and How

Using iO: An Example
PKE from SKE using iO

PK = iO(fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)

Problem using iO: iO may not hide K!

But the functionality of fK depends only on PRFK evaluated on
the range of PRG. So it is plausible that there are alternate
representations of fK that does not reveal K fully

Idea: Imagine challenge ciphertext is (r, PRFK(r) ⊕ m) where r is
not in the range of PRG!

Cannot tell the difference by security of PRG

Revealing functionality fK need not reveal PRFK(r)

Using iO: An Example
PKE from SKE using iO

PK = iO(fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)

Idea: Imagine challenge ciphertext is CT’ = (r, PRFK(r) ⊕ m)
where r is not in the range of PRG!

Cannot tell the difference with real CT by security of PRG

Punctured PRF: Key Kr ̅to evaluate PRFK on inputs other than r,
such that PRFK(r) is pseudorandom given Kr ̅

f’Kr ̅(s,m) = (PRG(s), PRF’Kr ̅(PRG(s)) ⊕ m), is functionally
equivalent to fK, where PRF’ is the PRF punctured at input r

Let PK’ = iO(f’Kr ̅(⋅)). Then (CT,PK) ≈ (CT’,PK’)

(CT’,PK’) completely hides m, even if PK’ revealed all of Kr ̅

By modifying
the standard
construction

Punctured PRF
used only in

proof

Pseudorandom Function
(PRF)

A PRF can be constructed from any PRG

K00

K01

K10

K11

G

G

G
K000

K001

G
K010

K011

G
K100

K101

G
K110

K111r

Kr...GK

K0

K1

G is a
length-
doubling

PRG

Pseudorandom Function
(PRF)

e.g., PRF punctured at an input 101:

K00

K01

K10

K11

G

G

G
K000

K001

G
K010

K011

G
K100

K101

G
K110

K111r

Kr...GK

K0

K1

Punctured
Key: K1̅0̅1̅

K0 K11 K100

r≠101

Functions f: {0,1}* → {0,1}* are often represented as circuit
families (boolean or arithmetic)

Family of circuits C = { Cn }n≥1

Each circuit is a DAG, with n input wires. Will restrict
ourselves to circuits with 2-input gates

For each input size n there is a separate circuit Cn (w.l.o.g.,
same output size for each fixed input size)

Depth of a DAG: length of the longest root-to-leaf path

C said to have “constant depth” if depth(Cn) ≤ c, for all n

C in class NCi if depth(Cn) ≤ c⋅logi n, for some c

Note: In NC0 circuits each output wire connected to a constant
number of input wires

Circuit Depth

iO candidate from multi-linear map candidates, using matrix
programs

Polynomial sized iO if polynomial-sized matrix programs

Barrington’s Theorem: NC1 functions have polynomial-sized
matrix programs (with 5x5 matrices)

Can “bootstrap” from this to all polynomial-sized circuits/
polynomial-time computable functions, assuming Fully
Homomorphic Encryption with decryption in NC1

Bootstrapping for iORe
ca
ll

Idea: Carry out FHE (for polynomial depth) evaluation, and use
obfuscated program to do decryption

Function C will be encrypted, input m can be given in the clear

Let U denote a (deep) circuit s.t. U(C,m) = C(m). Let Um be U with
m hardwired as the second input.

Obfuscation: (σ,π) where σ=FHE-Enc(C) and π=iO(P) where P is
a low-depth program that decrypts an FHE ciphertext σ*, but
only if it is obtained by evaluating Um homomorphically on σ (for
some input m)

How can P ensure this without computing Um itself?

P takes a proof that σ* = F(m’) := FHE-Eval(Um’,σ) for some m’

Proof: σ* and all wire values in circuit evaluating F(m’).
Can verify each gate separately (in NC0), and AND the
results (in NC1) to get the full verification result

Bootstrapping for iO

Obfuscation: (PK,σ,π) where σ=FHE-EncPK(C) and π=iO(P)

P(σ*,φ) = FHE-DecSK(σ*) if Verify(σ*,φ)=1

Proof φ is for the claim: ∃ m’ s.t. σ* = FHE-EvalPK(Um’,σ)

Evaluation: Compute σ* and φ using m. Run π(σ*,φ) to get C(m)

Secure? Need to hide representation of C

But π may not hide the FHE decryption key SK!

Idea: Have multiple representations of P s.t. some representations
don’t reveal SK or anything beyond C’s functionality

Will have σ=(σ1,σ2), with σi ← FHE-EncPKi(C). And the claim proven is
∃ m’ s.t. σ1* = FHE-EvalPK1(Um’,σ1) ∧ σ2* = FHE-EvalPK2(Um’,σ2)

Bootstrapping for iO

Obfuscation: (PK1,PK2,σ1,σ2,π) where σi ← FHE-EncPKi(C) and π=iO(P1)

P1(σ1*,σ2*,φ) = FHE-DecSK1(σ1*) if Verify(σ1*,σ2*,φ)=1

Proof φ for claim ∃ m’ s.t. for i=1,2, σi* = FHE-EvalPKi(Um’,σ1)

Evaluation: Compute σ1*,σ2*, φ using m. Run π(σ1*,σ2*,φ) to get C(m)

Consider functionally equivalent C1 and C2 and following “hybrids”

1. Obfuscation of C1 : σi ← FHE-EncPKi(C1) and π=iO(P1)

2. Uses σi ← FHE-EncPKi(Ci)

3. Uses π=iO(P2) where P2 uses SK2 to decrypt σ2*

4. Uses σi ← FHE-EncPKi(C2)

5. Uses π=iO(P1). This is an honest obfuscation of C2.

Bootstrapping for iO

(1) ≈ (2): FHE security for SK2

(2) ≈ (3): By iO. P1, P2 functionally equivalent!

(3) ≈ (4): FHE security for SK1

(4) ≈ (5): Again by iO.

Recall the GMW and BGW protocols

Gate-by-gate evaluation of a circuit (DAG)

Gates can be evaluated in any order as long as we respect a
topological sort

Can parallelise by grouping gates into levels

Number of rounds of interaction = number of levels

Smallest number of levels = depth of the circuit

Moral: Functions with shallow circuits are quicker to evaluate

Can sometimes do better by working with low-depth “randomized

encoding” of functions than directly with their own circuits

Coming up: An example of randomized encoding

Depth and Interaction

 

Garbled Circuits

00 1 1

0 1

F

F

F

Recall: Each wire w has two keys (Kw=0 and Kw=1). Each
garbled gate has 4 boxes with keys for the output wire,
locked with keys for input wires

Locking: EncKx=a(EncKy=b(Kw=g(a,b)))

Randomized Encoding of C(x):

{ Garbled gates for C, Keys for input x}

Reveals nothing but C(x) (only computationally secure)

Decoding has depth proportional to the circuit C

But encoding depth independent of C!

Pick all keys, and all garbled gates can be prepared in
parallel

 

Garbled Circuits

00 1 1

0 1

F

F

F

Recall: Each wire w has two keys (Kw=0 and Kw=1). Each
garbled gate has 4 boxes with keys for the output wire,
locked with keys for input wires

Locking: EncKx=a(EncKy=b(Kw=g(a,b)))
An application to MPC: BMR protocol

Yao’s protocol is 1-round, but for only 2 parties

GMW works for m parties, but is not constant round

BMR: Use GMW protocol to compute the garbled-circuit
based randomized encoding of f(x1,…,xm)

Constant depth encoding ⇒ constant number of rounds.  

Revealing the entire encoding is secure. Decoding
(evaluation of GC) done locally by each party.

 

Garbled Circuits

00 1 1

0 1

F

F

F

Recall: Each wire w has two keys (Kw=0 and Kw=1). Each
garbled gate has 4 boxes with keys for the output wire,
locked with keys for input wires

Locking: EncKx=a(EncKy=b(Kw=g(a,b)))

Information-theoretic garbling: why not just use
information-theoretic encryption?

One-time pad: EncK(m) = m⊕K

But Kx=a used to encrypt two values in a gate,
EncKy=0(Kw=g(a,0)) and EncKy=1(Kw=g(a,1))

If the wire x fans out to t gates, encrypts 2t values

Can we still use a one-time pad?

Information-Theoretic
Garbled Circuits

00 1 1

0 1

F

F

F

Recall: Each wire w has two keys (Kw=0 and Kw=1). Each
garbled gate has 4 boxes with keys for the output wire,
locked with keys for input wires

Locking: EncKx=a(EncKy=b(Kw=g(a,b)))

Encrypting 2t messages ≡ encrypting a long message

Suppose fan-out bounded by t. Then for wires wi at
depth i, enough to have |Kwi=a| = 2t |Kwi-1=c|

Key-size at depth d = O((2t)d) (with 1-bit key at the
output)

Polynomial sized if d is logarithmic and t constant

Information-theoretic garbled circuits  
possible for shallow circuits (NC1)

Alternate constructions
avoid bound on t

Supports messages μ ∈ {0,1} and NAND operations up to an a priori
bounded depth of NANDs

Public key M ∈ Zq
m×n and private key z s.t. zTM has small entries

Enc(μ) = MTR + μG where R ← {0,1}m×km (and G ∈ Zq
n×km the matrix

to reverse bit-decomposition)

Decz(C) : zTC = δT + μzTG where δT =eTR

NAND(C1,C2) : G - C1⋅B(C2) (G is a (non-random) encryption of 1)

zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)  

 = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG  
where δT = δ1TB(C2) + μ1δ2T has small entries

In general, error gets multiplied by km. Allows depth ≈ logkm q

Gentry-Sahai-Waters

Only “left depth”
counts, since 
δ ≤ k⋅m⋅δ1 + δ2

Re
ca
ll

To refresh a given ciphertext C. Also given an encryption of sk (in
the public-key). Let DC be s.t. DC(sk) := Dec(C,sk).

Refresh(C,Enc(sk)) = HomomEval(DC, Enc(sk))

Need depth of DC to be strictly less than the depth 
allowed by the homomorphic encryption scheme  
 

 

 

 

 

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic
evaluation in the
ciphertext spaceFresh encryption of

sk, provided along
with the public key

Refreshed: Doesn’t depend
on how unfresh C was, but
only on the depth of DC

Re
ca
ll

Discussion

That’s All Folks!

