#### Miscellany

Lecture 25 Using iO: Examples Shallow Computation: Why and How

### Using iO: An Example

#### PKE from SKE using iO

- PK = iO(  $f_{\kappa}(\cdot)$ ) where  $f_{\kappa}(s,m) = (PRG(s), PRF_{\kappa}(PRG(s)) \oplus m)$
- Problem using iO: iO may not hide K!
- But the functionality of f<sub>K</sub> depends only on PRF<sub>K</sub> evaluated on the range of PRG. So it is plausible that there are alternate representations of f<sub>K</sub> that does not reveal K fully
- Idea: Imagine challenge ciphertext is (r,  $PRF_{\kappa}(r) \oplus m$ ) where r is <u>not</u> in the range of PRG!
  - Cannot tell the difference by security of PRG
  - Revealing functionality  $f_{K}$  need not reveal  $PRF_{K}(r)$

#### used only in proof

By modifying the standard construction

#### PKE from KE using iO

- PK = iO( $f_{\kappa}(\cdot)$ ) where  $f_{\kappa}(s,m) = (PRG(s) RF_{\kappa}(PRG(s)) \oplus m)$
- Idea: Imagine challenge cipheriext is  $CT' = (r, PRF_{\kappa}(r) \oplus m)$ where r is <u>not</u> in the range of PRG!
  - Cannot tell the difference with real CT by security of PRG
- Punctured PRF: Key K<sup>r</sup> to evaluate PRF<sub>k</sub> on inputs other than r, such that PRF<sub>k</sub>(r) is pseudorandom given K<sup>r</sup>
- $f'_{\kappa} (s,m) = (PRG(s), PRF'_{\kappa} (PRG(s)) \oplus m)$ , is functionally equivalent to  $f_{\kappa}$ , where PRF' is the PRF punctured at input r
- ✓ Let PK' = iO(f'<sub>K</sub><sup>T</sup>(·)). Then (CT,PK) ≈ (CT',PK')
  - (CT',PK') completely hides m, even if PK' revealed all of  $K^{\overline{r}}$

# Pseudorandom Function (PRF)

A PRF can be constructed from any PRG





#### Circuit Depth

Functions f:  $\{0,1\}^* \rightarrow \{0,1\}^*$  are often represented as circuit families (boolean or arithmetic)

• Family of circuits  $C = \{ C^n \}_{n \ge 1}$ 

Each circuit is a DAG, with n input wires. Will restrict ourselves to circuits with 2-input gates

For each input size n there is a separate circuit C<sup>n</sup> (w.l.o.g., same output size for each fixed input size)

Depth of a DAG: length of the longest root-to-leaf path

• C said to have "constant depth" if depth(C<sup>n</sup>)  $\leq$  c, for all n

• C in class NC<sup>i</sup> if depth(C<sup>n</sup>)  $\leq$  c · log<sup>i</sup> n, for some c

Note: In NC<sup>o</sup> circuits each output wire connected to a constant number of input wires

# Bootstrapping for iO

iO candidate from multi-linear map candidates, using matrix programs

Recall

- Polynomial sized iO if polynomial-sized matrix programs
- Barrington's Theorem: NC<sup>1</sup> functions have polynomial-sized matrix programs (with 5x5 matrices)

Can "bootstrap" from this to all polynomial-sized circuits/ polynomial-time computable functions, assuming Fully Homomorphic Encryption with decryption in NC<sup>1</sup>

### Bootstrapping for iO

- Idea: Carry out FHE (for polynomial depth) evaluation, and use obfuscated program to do decryption
  - Function C will be encrypted, input m can be given in the clear
  - Let U denote a (deep) circuit s.t. U(C,m) = C(m). Let  $U_m$  be U with m hardwired as the second input.
  - Obfuscation: (σ,π) where σ=FHE-Enc(C) and π=iO(P) where P is

     a low-depth program that decrypts an FHE ciphertext σ\*, but
     only if it is obtained by evaluating U<sub>m</sub> homomorphically on σ (for
     some input m)
    - How can P ensure this without computing U<sub>m</sub> itself?
    - P takes a proof that  $\sigma^* = F(m') := FHE-Eval(U_{m'},\sigma)$  for some m'

Proof: σ\* and all wire values in circuit evaluating F(m'). Can verify each gate separately (in NC<sup>0</sup>), and AND the results (in NC<sup>1</sup>) to get the full verification result

### Bootstrapping for iO

• Obfuscation: (PK, $\sigma$ , $\pi$ ) where  $\sigma$ =FHE-Enc<sub>PK</sub>(C) and  $\pi$ =iO(P)

- $P(\sigma^*, \varphi) = FHE-Dec_{SK}(\sigma^*)$  if  $Verify(\sigma^*, \varphi)=1$
- Proof  $\varphi$  is for the claim:  $\exists m' \text{ s.t. } \sigma^* = \text{FHE-Eval}_{PK}(U_{m'},\sigma)$
- Evaluation: Compute  $\sigma^*$  and  $\varphi$  using m. Run  $\pi(\sigma^*,\varphi)$  to get C(m)
- Secure? Need to hide representation of C
- Idea: Have multiple representations of P s.t. some representations don't reveal SK or anything beyond C's functionality
- Will have  $\sigma = (\sigma_1, \sigma_2)$ , with  $\sigma_i \leftarrow FHE-Enc_{PK_i}(C)$ . And the claim proven is  $\exists m' \text{ s.t. } \sigma_1^* = FHE-Eval_{PK_1}(U_{m'}, \sigma_1) \land \sigma_2^* = FHE-Eval_{PK_2}(U_{m'}, \sigma_2)$

Bootstrapping for iO • Obfuscation: (PK<sub>1</sub>,PK<sub>2</sub>, $\sigma_1,\sigma_2,\pi$ ) where  $\sigma_i \leftarrow FHE-Enc_{PK_i}(C)$  and  $\pi=iO(P_1)$ •  $P_1(\sigma_1^*, \sigma_2^*, \varphi) = FHE-Dec_{SK_1}(\sigma_1^*)$  if  $Verify(\sigma_1^*, \sigma_2^*, \varphi)=1$ • Proof  $\varphi$  for claim  $\exists$  m' s.t. for i=1,2,  $\sigma_i^* = FHE-Eval_{PK_i}(U_{m'},\sigma_1)$ • Evaluation: Compute  $\sigma_1^*, \sigma_2^*, \varphi$  using m. Run  $\pi(\sigma_1^*, \sigma_2^*, \varphi)$  to get C(m) Consider functionally equivalent C<sub>1</sub> and C<sub>2</sub> and following "hybrids" Objuscation of C<sub>1</sub> :  $\sigma_i$  ← FHE-Enc<sub>PKi</sub>(C<sub>1</sub>) and π=iO(P<sub>1</sub>) O 2. Uses σ<sub>i</sub> ← FHE-Enc<sub>PKi</sub>(C<sub>i</sub>)
 (1) ≈ (2): FHE security for SK<sub>2</sub>
 (2) ≈ (3): By iO. P<sub>1</sub>, P<sub>2</sub> functionally equivalent!
 O 3. Uses π=iO(P<sub>2</sub>) where P<sub>2</sub> uses SK<sub>2</sub> to decrypt σ<sub>2</sub>\* 4. Uses σ<sub>i</sub> ← FHE-Enc<sub>PKi</sub>(C<sub>2</sub>)
 (3) ≈ (4): FHE security for SK<sub>1</sub>
 (4) ≈ (5): Again by iO.
 5. Uses π=iO(P<sub>1</sub>). This is an nonest obtuscation of C<sub>2</sub>.

#### Depth and Interaction

- Recall the GMW and BGW protocols
- Gate-by-gate evaluation of a circuit (DAG)
- Gates can be evaluated in any order as long as we respect a topological sort
- Can parallelise by grouping gates into <u>levels</u>
  Number of rounds of interaction = number of levels
  Smallest number of levels = depth of the circuit
  Moral: Functions with shallow circuits are quicker to evaluate
  Can sometimes do better by working with low-depth "randomized encoding" of functions than directly with their own circuits
  Coming up: An example of randomized encoding

#### Garbled Circuits

- Recall: Each wire w has two keys (K<sub>w=0</sub> and K<sub>w=1</sub>). Each garbled gate has 4 boxes with keys for the output wire, locked with keys for input wires
  - Locking: Enc<sub>Kx=a</sub>(Enc<sub>Ky=b</sub>(K<sub>w=g(a,b)</sub>))
- Randomized Encoding of C(x):
  - Garbled gates for C, Keys for input x
- Reveals nothing but C(x) (only computationally secure)
- Decoding has depth proportional to the circuit C
- But encoding depth independent of C!
  - Pick all keys, and all garbled gates can be prepared in parallel





#### Garbled Circuits

- Recall: Each wire w has two keys (K<sub>w=0</sub> and K<sub>w=1</sub>). Each garbled gate has 4 boxes with keys for the output wire, locked with keys for input wires
  - Locking:  $Enc_{K_{x=a}}(Enc_{K_{y=b}}(K_{w=g(a,b)}))$
- An application to MPC: BMR protocol
- Yao's protocol is 1-round, but for only 2 parties
- GMW works for m parties, but is not constant round
- BMR: Use GMW protocol to compute the garbled-circuit based randomized encoding of f(x<sub>1</sub>,...,x<sub>m</sub>)
  - ✓ Constant depth encoding ⇒ constant number of rounds.
     Revealing the entire encoding is secure. Decoding (evaluation of GC) done locally by each party.









#### Garbled Circuits

- Recall: Each wire w has two keys (K<sub>w=0</sub> and K<sub>w=1</sub>). Each garbled gate has 4 boxes with keys for the output wire, locked with keys for input wires
  - Locking:  $Enc_{K_{x=a}}(Enc_{K_{y=b}}(K_{w=g(a,b)}))$
- Information-theoretic garbling: why not just use information-theoretic encryption?
  - One-time pad:  $Enc_{K}(m) = m \oplus K$
  - But K<sub>x=a</sub> used to encrypt two values in a gate, Enc<sub>Ky=0</sub>(K<sub>w=g(a,0)</sub>) and Enc<sub>Ky=1</sub>(K<sub>w=g(a,1)</sub>)
  - If the wire x fans out to t gates, encrypts 2t values
  - Can we still use a one-time pad?







## Information-Theoretic Garbled Circuits

- Recall: Each wire w has two keys (K<sub>w=0</sub> and K<sub>w=1</sub>). Each garbled gate has 4 boxes with keys for the output wire, locked with keys for input wires
  - Locking:  $Enc_{K_{x=a}}(Enc_{K_{y=b}}(K_{w=g(a,b)}))$
- Encrypting 2t messages = encrypting a long message
  - Suppose fan-out bounded by t. Then for wires w<sub>i</sub> at depth i, enough to have |K<sub>wi=a</sub>| = 2t |K<sub>wi-1=c</sub>|
  - Key-size at depth d = O( (2t)<sup>d</sup>) (with 1-bit key at the output)
- Polynomial sized if d is logarithmic and t constant
- Information-theoretic garbled circuits
   possible for shallow circuits (NC<sup>1</sup>)

Alternate constructions avoid bound on t







## Gentry-Sahai-Waters

- ${\ensuremath{ \circ }}$  Supports messages  $\mu \in \{0,1\}$  and NAND operations up to an a priori bounded depth of NANDs
- Public key  $M \in \mathbb{Z}_q^{m \times n}$  and private key  $\mathbf{z}$  s.t.  $\mathbf{z}^T M$  has small entries
- Enc(μ) = M<sup>T</sup>R + μG where R ← {0,1}<sup>m×km</sup> (and G ∈ Z<sub>q</sub><sup>n×km</sup> the matrix to reverse bit-decomposition)
- $Dec_z(C) : \underline{z}^T C = \underline{\delta}^T + \mu \underline{z}^T G$  where  $\underline{\delta}^T = e^T R$

Recall

• NAND( $C_1, C_2$ ) : G -  $C_1 \cdot B(C_2)$  (G is a (non-random) encryption of 1)

•  $\mathbf{Z}^{\mathsf{T}}C_1 \cdot \mathbf{B}(C_2) = \mathbf{Z}^{\mathsf{T}}C_1 \cdot \mathbf{B}(C_2) = (\underline{\delta}_1^{\mathsf{T}} + \mu_1 \mathbf{Z}^{\mathsf{T}}G) \mathbf{B}(C_2)$  $= \underline{\delta}_1^{\mathsf{T}}\mathbf{B}(C_2) + \mu_1 \mathbf{Z}^{\mathsf{T}}C_2 = \underline{\delta}^{\mathsf{T}} + \mu_1 \mu_2 \mathbf{Z}^{\mathsf{T}}G$ where  $\underline{\delta}^{\mathsf{T}} = \underline{\delta}_1^{\mathsf{T}}\mathbf{B}(C_2) + \mu_1 \underline{\delta}_2^{\mathsf{T}}$  has small entries

Only "left depth" counts, since <u>δ</u> ≤ k·m·δ₁ + δ₂

In general, error gets multiplied by km. Allows depth ≈  $log_{km}$  q

#### Bootstrapping

To refresh a given ciphertext C. Also given an encryption of sk (in the public-key). Let D<sub>c</sub> be s.t. D<sub>c</sub>(sk) := Dec(C,sk).

μ

Dc

Refresh(C,Enc(sk)) = HomomEval(D<sub>c</sub>, Enc(sk))

Recall

Need depth of D<sub>c</sub> to be strictly less than the depth allowed by the homomorphic encryption scheme



#### Discussion

## That's All Folks!