
Miscellany

Lecture 25

Using iO: Examples


Shallow Computation: Why and How



Using iO: An Example
PKE from SKE using iO


PK = iO( fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)


Problem using iO: iO may not hide K!


But the functionality of fK depends only on PRFK evaluated on 
the range of PRG. So it is plausible that there are alternate 
representations of fK that does not reveal K fully


Idea: Imagine challenge ciphertext is (r, PRFK(r) ⊕ m) where r is 
not in the range of PRG!


Cannot tell the difference by security of PRG


Revealing functionality fK need not reveal PRFK(r) 



Using iO: An Example
PKE from SKE using iO


PK = iO( fK(⋅)) where fK(s,m) = (PRG(s), PRFK(PRG(s)) ⊕ m)


Idea: Imagine challenge ciphertext is CT’ = (r, PRFK(r) ⊕ m) 
where r is not in the range of PRG!


Cannot tell the difference with real CT by security of PRG


Punctured PRF: Key Kr ̅to evaluate PRFK on inputs other than r, 
such that PRFK(r) is pseudorandom given Kr ̅


f’Kr ̅(s,m) = (PRG(s), PRF’Kr ̅(PRG(s)) ⊕ m),  is functionally 
equivalent to fK, where PRF’ is the PRF punctured at input r


Let PK’ = iO(f’Kr ̅(⋅)). Then (CT,PK) ≈ (CT’,PK’)


(CT’,PK’) completely hides m, even if PK’ revealed all of Kr ̅

By modifying 
the standard 
construction

Punctured PRF 
used only in 

proof



Pseudorandom Function 
(PRF)

A PRF can be constructed from any PRG
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Pseudorandom Function 
(PRF)

e.g., PRF punctured at an input 101:
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Functions f: {0,1}* → {0,1}* are often represented as circuit 
families (boolean or arithmetic)


Family of circuits C = { Cn }n≥1


Each circuit is a DAG, with n input wires. Will restrict 
ourselves to circuits with  2-input gates


For each input size n there is a separate circuit Cn (w.l.o.g., 
same output size for each fixed input size)


Depth of a DAG: length of the longest root-to-leaf path


C said to have “constant depth” if depth(Cn) ≤ c, for all n


C in class NCi if depth(Cn) ≤ c⋅logi n, for some c


Note: In NC0 circuits each output wire connected to a constant 
number of input wires

Circuit Depth



iO candidate from multi-linear map candidates, using matrix 
programs


Polynomial sized iO if polynomial-sized matrix programs


Barrington’s Theorem: NC1 functions have polynomial-sized 
matrix programs (with 5x5 matrices)


Can “bootstrap” from this to all polynomial-sized circuits/
polynomial-time computable functions, assuming Fully 
Homomorphic Encryption with decryption in NC1

Bootstrapping for iORe
ca
ll



Idea: Carry out FHE (for polynomial depth) evaluation, and use 
obfuscated program to do decryption


Function C will be encrypted, input m can be given in the clear


Let U denote a (deep) circuit s.t. U(C,m) = C(m). Let Um be U with 
m hardwired as the second input.


Obfuscation:  (σ,π) where σ=FHE-Enc(C) and π=iO(P) where P is 
a low-depth program that decrypts an FHE ciphertext σ*, but 
only if it is obtained by evaluating Um homomorphically on σ (for 
some input m)


How can P ensure this without computing Um itself?


P takes a proof that σ* = F(m’) := FHE-Eval(Um’,σ) for some m’


Proof: σ* and all wire values in circuit evaluating F(m’). 
Can verify each gate separately (in NC0), and AND the 
results (in NC1) to get the full verification result

Bootstrapping for iO



Obfuscation:  (PK,σ,π) where σ=FHE-EncPK(C) and π=iO(P)


P(σ*,φ) = FHE-DecSK(σ*) if Verify(σ*,φ)=1

Proof φ is for the claim: ∃ m’ s.t. σ* = FHE-EvalPK(Um’,σ)


Evaluation: Compute σ* and φ using m. Run π(σ*,φ) to get C(m)


Secure? Need to hide representation of C


But π may not hide the FHE decryption key SK!


Idea: Have multiple representations of P s.t. some representations 
don’t reveal SK or anything beyond C’s functionality


Will have σ=(σ1,σ2), with σi ← FHE-EncPKi(C). And the claim proven is 
∃ m’ s.t. σ1* = FHE-EvalPK1(Um’,σ1) ∧ σ2* = FHE-EvalPK2(Um’,σ2)

Bootstrapping for iO



Obfuscation:  (PK1,PK2,σ1,σ2,π) where σi ← FHE-EncPKi(C) and π=iO(P1)


P1(σ1*,σ2*,φ) = FHE-DecSK1(σ1*) if Verify(σ1*,σ2*,φ)=1

Proof φ for claim ∃ m’ s.t. for i=1,2, σi* = FHE-EvalPKi(Um’,σ1)


Evaluation: Compute σ1*,σ2*, φ using m. Run π(σ1*,σ2*,φ) to get C(m)


Consider functionally equivalent C1 and C2 and following “hybrids”


1. Obfuscation of C1 : σi ← FHE-EncPKi(C1) and π=iO(P1)


2. Uses σi ← FHE-EncPKi(Ci)


3. Uses π=iO(P2) where P2 uses SK2 to decrypt σ2*

4. Uses σi ← FHE-EncPKi(C2)


5. Uses π=iO(P1). This is an honest obfuscation of C2.

Bootstrapping for iO

(1) ≈ (2): FHE security for SK2

(2) ≈ (3): By iO. P1, P2 functionally equivalent!

(3) ≈ (4): FHE security for SK1

(4) ≈ (5): Again by iO.



Recall the GMW and BGW protocols


Gate-by-gate evaluation of a circuit (DAG)


Gates can be evaluated in any order as long as we respect a 
topological sort


Can parallelise by grouping gates into levels


Number of rounds of interaction = number of levels


Smallest number of levels = depth of the circuit


Moral: Functions with shallow circuits are quicker to evaluate


Can sometimes do better by working with low-depth “randomized 

encoding” of functions than directly with their own circuits 


Coming up: An example of randomized encoding

Depth and Interaction



 

Garbled Circuits
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Recall: Each wire w has two keys (Kw=0 and Kw=1). Each 
garbled gate has 4 boxes with keys for the output wire, 
locked with keys for input wires


Locking: EncKx=a(EncKy=b(Kw=g(a,b))) 

Randomized Encoding of C(x):  


{ Garbled gates for C, Keys for input x}


Reveals nothing but C(x) (only computationally secure)


Decoding has depth proportional to the circuit C


But encoding depth independent of C!


Pick all keys, and all garbled gates can be prepared in 
parallel



 

Garbled Circuits
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Recall: Each wire w has two keys (Kw=0 and Kw=1). Each 
garbled gate has 4 boxes with keys for the output wire, 
locked with keys for input wires


Locking: EncKx=a(EncKy=b(Kw=g(a,b))) 
An application to MPC: BMR protocol


Yao’s protocol is 1-round, but for only 2 parties


GMW works for m parties, but is not constant round


BMR: Use GMW protocol to compute the garbled-circuit 
based randomized encoding of f(x1,…,xm)


Constant depth encoding ⇒ constant number of rounds.   

Revealing the entire encoding is secure. Decoding 
(evaluation of GC) done locally by each party.



 

Garbled Circuits
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Recall: Each wire w has two keys (Kw=0 and Kw=1). Each 
garbled gate has 4 boxes with keys for the output wire, 
locked with keys for input wires


Locking: EncKx=a(EncKy=b(Kw=g(a,b))) 

Information-theoretic garbling: why not just use 
information-theoretic encryption?


One-time pad: EncK(m) = m⊕K


But Kx=a used to encrypt two values in a gate, 
EncKy=0(Kw=g(a,0)) and EncKy=1(Kw=g(a,1))


If the wire x fans out to t gates, encrypts 2t values


Can we still use a one-time pad?



Information-Theoretic 
Garbled Circuits
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Recall: Each wire w has two keys (Kw=0 and Kw=1). Each 
garbled gate has 4 boxes with keys for the output wire, 
locked with keys for input wires


Locking: EncKx=a(EncKy=b(Kw=g(a,b))) 

Encrypting 2t messages ≡ encrypting a long message


Suppose fan-out bounded by t. Then for wires wi at 
depth i, enough to have |Kwi=a| = 2t |Kwi-1=c|


Key-size at depth d = O( (2t)d) (with 1-bit key at the 
output)


Polynomial sized if d is logarithmic and t constant


Information-theoretic garbled circuits  
possible for shallow circuits (NC1)

Alternate constructions 
avoid bound on t



Supports messages μ ∈ {0,1} and NAND operations up to an a priori 
bounded depth of NANDs


Public key M ∈ Zq
m×n and private key z s.t. zTM has small entries


Enc(μ) = MTR + μG where R ← {0,1}m×km (and G ∈ Zq
n×km the matrix 

to reverse bit-decomposition)


Decz(C) : zTC =  δT + μzTG where δT =eTR


NAND(C1,C2) : G - C1⋅B(C2)  (G is a (non-random) encryption of 1)


zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)  

            = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG  
where δT = δ1TB(C2) + μ1δ2T has small entries


In general, error gets multiplied by km. Allows depth ≈ logkm q

Gentry-Sahai-Waters

Only “left depth” 
counts, since 
δ ≤ k⋅m⋅δ1 + δ2

Re
ca
ll



To refresh a given ciphertext C.  Also given an encryption of sk (in 
the public-key). Let DC be s.t. DC(sk) := Dec(C,sk).


Refresh(C,Enc(sk)) = HomomEval(DC, Enc(sk))


Need depth of DC to be strictly less than the depth 
allowed by the homomorphic encryption scheme  
 

 

 

 

 

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic 
evaluation in the 
ciphertext spaceFresh encryption of 

sk, provided along 
with the public key

Refreshed: Doesn’t depend 
on how unfresh C was, but 
only on the depth of DC

Re
ca
ll



Discussion



That’s All Folks!


