Advanced Tools from Modern Cryptography

Lecture 1

Basics: Indistinguishability

Manoj Prabhakaran

IIT Bombay

Outline

- Independence
- Statistical Indistinguishability
- Computational Indistinguishability

A Game

- A "dealer" and two "players" Alice and Bob (computationally unbounded)
- Dealer has a message, say two bits m₁m₂
- She wants to "share" it among the two players so that neither player by herself/himself learns anything about the message, but together they can find it
- Bad idea: Give m₁ to Alice and m₂ to Bob
- Other ideas?

Sharing a bit

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob _____
 - Together they can recover m as a⊕b

Each party by itself learns nothing about m: for each possible value of m, its share has the same distribution

```
m = 0 \rightarrow (a,b) = (0,0) or (1,1) w.p. 1/2 each
m = 1 \rightarrow (a,b) = (1,0) or (0,1) w.p. 1/2 each
```

@ i.e., Each party's "view" is independent of the message

Secrecy

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability 1/2, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is uniformly random!)
- But they could have done this without obtaining the shares
 - The shares didn't leak any <u>additional</u> information to either party
- Typical crypto goal: preserving secrecy
 - What Alice (or Bob) knows about the message after seeing her share is the same as what she knew a priori

Secrecy

- What Alice knows about the message a priori: probability distribution over the message
 - For each message m, Pr[msg=m]
- What she knows after seeing her share (a.k.a. her view)
 - Say view is v. Then new distribution: Pr[msg=m | view=v]
- Secrecy: \forall v, \forall m, $Pr[msg=m \mid view = v] = Pr[msg = m]$
 - i.e., view is independent of message
 - © Equivalently, \forall v, \forall m, $Pr[view=v \mid msg=m] = Pr[view=v]$
 - i.e., for all possible values of the message, the view is distributed the same way
 - i.e., \forall m₁,m₂ { Share_A(m₁;r) }_r = { Share_A(m₂;r) }_r

Secrecy

Doesn't involve message distribution at all.

- Equivalent formulations:
 - For all possible values of the message, the view is distributed the same way
 - View and message are independent of each other
 - View gives no information about the message <</p>

Require a message distribution (with full support)

Important: can't say Pr[msg=m1 | view=v] = Pr[msg=m2 | view=v] (unless the prior is uniform)

Exercise

- Consider the following secret-sharing scheme
 - Message space = { Jan, Feb, Mar }

 - Feb → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each
 - Mar → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or (11,00) w/ prob 1/8 each
 - Reconstruction: Let $\beta_1\beta_2$ = share_{Alice} \oplus share_{Bob}. Map $\beta_1\beta_2$ as follows: $00 \rightarrow$ Jan, $01 \rightarrow$ Feb, 10 or $11 \rightarrow$ Mar
- Is it secure?

Onetime Encryption The Syntax

- Shared-key (Private-key) Encryption
 - Key Generation: Randomized
 - \bullet K \leftarrow %, uniformly randomly drawn from the key-space (or according to a key-distribution)
 - Encryption: Deterministic

• Enc: $\mathcal{M} \times \mathcal{K} \longrightarrow \mathcal{C}$

Needs randomisation for more-than-once encryption

- Decryption: Deterministic
 - \bullet Dec: $C \times \mathcal{K} \rightarrow \mathcal{M}$

Onetime Encryption

Perfect Secrecy

defined

- Perfect secrecy: ∀ m, m' ∈ M

 - Distribution of the ciphertext

THE FUHLOHIMESS IN THE KEY

In addition, require correctness

- E.g. One-time pad: $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^n$ and $\mathsf{Enc}(\mathsf{m},\mathsf{K}) = \mathsf{m} \oplus \mathsf{K}, \, \mathsf{Dec}(\mathsf{c},\mathsf{K}) = \mathsf{c} \oplus \mathsf{K}$

0	More generally $\mathcal{M} =$	$\mathcal{K} = \mathcal{C} = \mathcal{G}$ (a finite	group)
	and $Enc(m,K) = m+K$	Dec(c,K) = c-K	

	N M	0	1	2	3
	a	X	У	У	Z
STATE OF THE PARTY	b	У	X	Z	У

Assuming K uniformly drawn from $\mathscr K$

Same for Enc(b,K).

Relaxing Secrecy Requirement

- When view is not exactly independent of the message
 - Next best: view close to a distribution that is independent of the message
 - Two notions of closeness: Statistical and Computational

Statistical Difference

- Given two distributions A and B over the same sample space, how well can a <u>test</u> T distinguish between them?
 - T given a single sample drawn from A or B
 - How differently does it behave in the two cases?
- \bullet $\Delta(A,B) := \max_{T} | Pr_{X \leftarrow A}[T(x)=1] Pr_{X \leftarrow B}[T(x)=1] |$

Indistinguishability

- Two distributions are statistically indistinguishable from each other if the statistical difference between them is "negligible"
- Security guarantees will be given <u>asymptotically</u> as a function of the <u>security parameter</u>
 - A knob that can be used to set the security level
- Given $\{A_k\}$, $\{B_k\}$, $\Delta(A_k,B_k)$ is a function of the security parameter k
- Negligible: reduces "very quickly" as the knob is turned up
 - The vary quickly and quicker than 1/poly for any polynomial poly
 - So that if negligible for one sample, remains negligible for polynomially many samples
 - v(k) is said to be negligible if \forall d ≥ 0, \exists N s.t. \forall k>N, v(k) < 1/k^d

Indistinguishability

② Distribution ensembles $\{A_k\}$, $\{B_k\}$ are statistically indistinguishable if ∃ negligible v(k) s.t. $\Delta(A_k,B_k) \le v(k)$

$$\bullet$$
 $\Delta(A_k,B_k) := \max_{T} | Pr_{x \leftarrow A_k}[T(x)=1] - Pr_{x \leftarrow B_k}[T(x)=1] |$

Can rewrite as: \forall tests $T_{k} = 0$ negligible v(k) s.t. $|Pr_{k} - A_{k}[T_{k}(x)=1] - Pr_{k} - B_{k}[T_{k}(x)=1]| \leq v(k)$

In particular,
T that is best for all k.
(k is also given to T)

Distribution ensembles $\{A_k\}$, $\{B_k\}$ computationally indistinguishable if \forall "efficient" tests T, \exists negligible v(k) s.t.

$$|\Pr_{x \leftarrow A_k}[T_k(x)=1] - \Pr_{x \leftarrow B_k}[T_k(x)=1]| \le \nu(k)$$

Really need to allow a different v for each T

Indistinguishability

- Distribution ensembles $\{A_k\}$, $\{B_k\}$ computationally indistinguishable if \forall "efficient" tests T, \exists negligible v(k) s.t. $|\Pr_{x \leftarrow A_k}[T_k(x)=1] \Pr_{x \leftarrow B_k}[T_k(x)=1]| \le v(k)$ $A_k \approx B_k$
- Efficient: Probabilistic Polynomial Time (PPT)
 Non-Uniform
 - PPT T: a family of randomised programs T_k (one for each value of the security parameter k), s.t. there is a polynomial p with each T_k running for at most p(k) time
 - © (Could restrict to uniform PPT, i.e., a single program which takes k as an additional input. But by default, we'll allow non-uniform.)