Advanced Tools from
Modern Cryptography

Lecture 2
First Tool: Secret-Sharing



Secret-Sharing

@ Dealer encodes a message into n shares for n parties

@ Privileged subsets of parties should be able to reconstruct the

secret } Access Structure: Set of all privileged sets |

@ View of an unprivileged subset should be independent of the
secret

@ Very useful

@ Direct applications (distributed storage of data or keys)

@ Important component in other cryptographic constructions
@ Secure multi-party computation
@ Attribute-Based Encryption
@ Leakage resilience ..



Threshold Secret-Sharing

@ (n,t)-secret-sharing

@ Divide a message m into n shares s;i,...,Sn, such that

@ any t shares are enough to reconstruct the secret

@ up to t-1 shares should have no information about the

secret

@ Recall last time: (2,2) secret-sharing
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e.g., (s1,...,5t-1) has the
same distribution for every
m in
the message space
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Threshold Secret-Sharing

. : Additive
@ Construction: (n,n) secret-sharing {Secref-Sharing}

@ Message-space = share-space = G, a finite C[IIT)
@ e.g. G = Z, (group of bits, with xor as the group operation)

@ or, G = Z5 (group of d-bit strings)
@ or, G = Z, (group of integers mod p)
@ Share(M):

@ Pick s;,...,5n-1 uniformly at random from G
@Let sSn=-(S1+ ... +Sn1)+ M

@ Reconstruct(si,...,sn): M = S;1 + ... + S

@ Claim: This is an (n,n) secret-sharing scheme [Why?]



Additive Secret-Sharing: Proof

@ Share(M):
@ Pick si,...,5n-1 uniformly at random from G
@ Let sh=M - (s1 + ... +Sn-1)
@ Reconstruct(si,...,5n): M = 81 + ... + Sy
@ Claim: Upto n-1 shares give no information about M
@ Proof: Let T cC {1,..,n}, ITl = n-1. We shall show that { s; }ict is distributed the
same way (in fact, uniformly) irrespective of what M is.
@ For T = {1,..,n-1}, true by construction. How about other T?
@ For concreteness consider T = {2,...,n}. Fix any (n-1)-tuple of elements in G,
(91,---,gn-1) € G-1. To prove Prl (s,...,5n)=(g1,---,gn-1) ] is same for all M.

@ Fix any M.

@ (s2,...,5n) = (91,...,gn-1) < (s2,...,5n-1) = (gl,...,gn_z) and s; = M—(g1+...+gn_1).

@ So pl"[ (sz,...,sn)=(g1,...,gn_1) ] = PI"[ (S1,...,Sn-1)=(Cl,g1,...,gn_z) ], Cl:=(M—(gl+...+gn_1)
@ But Pr((si,...,5n-1)=(a,g1,-..,gn-2)] = 1/1GI-1, since (s1,...,5n-1) uniform over Gn-!
@ Hence Pr (s2,...,5n)=(g1,--,gn-1) 1 = 1/|GI*-1, irrespective of M. O




An Application

@ Gives a “private summation” protocol (for commutative groups)

Clients with inputs

Share \C) J //C> //O

v///

Servers

Add , ,
Client with output

@ “Secure against passive corruption” (i.e., no colluding set of
servers/clients learn more than what they must) if at least one
server stays out of the collusion




Linear Secret-Sharing

@ Another look at additive secre’r—sharing {Mul’riplica’rion by +1 and O well-defined in a group}

But more generally, we shall consider a

e

i M b lRe
\
Reconstruction vector x N
Rt with support in T, r
s.t. R+W =[10 .. 0]
Randomness used by Each coordinate is
the sharing algorithm a separate share

More generally, a share can
have multiple coordinates

@ Linear Secret-Sharing over a field: message and shares are field elements

® Reconstruction by a set T C [n] : solve the message from given shares

@ i.e., solve Wt [ "If\ ] = sT for M



Security of
Linear Secret-Sharing

@ Claim: Every such linear scheme is a secure secret-sharing scheme
for some access structure

@ Suppose T C [n] s.t. M not uniquely reconstructible from st

@ i.e., solution space (of z) for Wt-2 = st contains at least two points
with distinct values a and g for M

@ Then, v¥eF, the solution space has a point with M=)
(e.g., convex combination of the above points with factors (3-g)/(a-g) and (a-y)/(a-B) )

@ Therefore, for any ¥ € F, can add equation M=§ and get a solution
space of dimension d-1

@ i.e., with M=y, exactly |Fld-! choices of randomness r that give st

@ i.e., for all st and ¥, Prlview=st | M=y] = |Fld-1/|F|t+-1



Threshold Secret-Sharing

@ Construction: (n,2) secret-sharing
@ Message-space = share-space =F, a finite @(e.g. integers mod prime)

@ Share(M): pick random r. Let s; = r-aj + M (for i=1,...,n < |Fl)

D Recons’rrucf(si, Sj): r = (Si—Sj)/(ai—Clj); M=si -r-aq; a; are n distinct,
non-zero field elements

@ Each s; by itself is uniformly distribu

. . H -1 .
|rrespec1'|ve of M [Why?] Since fl. exists, exactly one
solution for r-ai+M=d, for

every value of d

@ "Geometric” interpretation

@ Sharing picks a random “line” y = f(x),
such that f(0)=M. Shares s; = f(ai).

@ s; is independent of M: exactly one line passing !
through (ai,si) and (O,M’) for any secret M’ SR 4 5 6

@ But can reconstruct the line from two points!



Threshold Secret-Sharing

@ (n,1) secret-sharing in a (large enough) field F [Shamir Secref_Sharing}

@ Generalizing the geometric/algebraic view: instead of lines, use
polynomials

@ Share(m): Pick a random degree t-1 polynomial f(X), such that
f(0)=M. Shares are s; = f(a;).

@ Random polynomial with f(0)=M: co + c1X + C2X2 +..+ C1X+1 by
picking co=M and c;,...,c+.1 at random.

@ Reconstruct(sy,...,st): Lagrange interpolation to find M=co

@ Given t points can reconstruct the polynomial. Given < t points,
for any M, there are polynomials which pass through (O,M’)

@ Secrecy: Shamirs scheme is linear!



Linearity of Shamir
Secret-Sharing

@ Shamirs scheme is a linear secret-sharing scheme

R Rt
f 1a, a2 .. at+! M S1
A

| 1a: a2 .. axt! Ci S2
C2

Polynomial
interpolation

b5y ' : Ct-1 .
1a, aﬂ;" a1 a; are n distinct, Sn
- non-zero field elements
@ Which sets T C [n] can reconstruct? i.e., T s.+ Wr spans [1 0 ... 0 ]?

@Wrspans [1 0 ... O Jiff |T] > t
a For |Tl=t W+ is a Vandermonde matrix, and is a basis for Ft

@ For |T| < t, can add a row [1 O ... 0 ] and (optionally) more rows of
the form [1 a a2.. at] to get a Vandermonde matrix. So [1 O ... O] is
independent of the rows of Wr

@ Secrecy: guaranteed for any linear secret-sharing scheme



More General Access
Structures

@ Idea: For arbitrary monotonic access structure A4, there is a
“basis” ‘B of minimal sets in A. For each S in B generate an
(Isl,ISl) sharing, and distribute them to the members of S.

--()

& How big is B? (Say when 7 is a threshold access structure)

@ Works, but very “inefficient”

@ Total share complexity = 3se5 S| field elements. (Compare

with Shamirs scheme: n field elements in all.) +.<") ]
.l.

@ More efficient schemes known for large classes of access
structures




More General Access
Structures 1.

@ A simple generalization of -

threshold access structures
Shares

@ A threshold tree to specify the
access structure

@ Can realize by recursively Shares

A R
threshold secret-sharing the = ‘\ °F 2

shares

@ Note: linear secret-sharing

@ Fact: Access structures that admit linear secret-sharing are those
which can be specified using “monotone span programs”



Today

@ Secret-sharing schemes
@ (n,t) Threshold secret-sharing
@ Additive sharing for (n,n)
@ Shamir secret-sharing for all (n,1)

@ Optimal (ideal) when message-space is a field with more
than n elements

@ Linear secret-sharing



