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Secret-Sharing

Last time

(n,t) secret-sharing

(n,n) via additive secret-sharing

Shamir secret-sharing for general (n,t)

Shamir secret-sharing is a linear 
secret-sharing scheme



Linear Secret-Sharing
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Reconstruction vector 
RT with support in T, 
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Each share is a 
set of coordinates

Linear Secret-Sharing over a field: message and shares are field elements

Reconstruction by a set T ⊆ [n] : solve  for MWT [ M 
r ] = sT



Linear Secret-Sharing: 
Computing on Shares

Suppose two secrets m1 and m2 shared using the 
same secret-sharing scheme 
 
 
 
 

Then for any p,q ∈ F, shares of p⋅m1 + q⋅m2 can be 

computed locally by each party i as σi =  p⋅σ1i + q⋅σ2i 
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Linear Secret-Sharing: 
Computing on Shares

More generally, can compute shares of any linear 
transformation
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Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear 
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Locally each party j reconstructs using scheme W: 
zj ←  W.Recon (σ1j,…,σnj)
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Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear 
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Locally each party j reconstructs using scheme W: 
zj ←  W.Recon (σ1j,…,σnj)

Note that if a set of parties T⊆[n] is allowed to learn the secret by 

either W or Z, then T learns m from either the shares it started with 
or the ones it ended up with

Claim: If T⊆[n] is not allowed to learn the secret by both W and Z, 

then T learns nothing about m from this process

Exercise



More General Access 
Structures

Idea: For arbitrary monotonic access structure A, there is a 

“basis” B of minimal sets in A. For each S in B generate an  

(|S|,|S|) sharing, and distribute them to the members of S.

Works, but very “inefficient”

How big is B? (Say when A is a threshold access structure)

Total share complexity = ∑S∈B |S| field elements. (Compare 

with Shamir’s scheme: n field elements in all.)

More efficient schemes known for large classes of access 
structures

|B| =(
n

t)

t⋅(
n
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More General Access 
Structures

A simple generalization of 
threshold access structures

A threshold tree to specify the 
access structure

Can realize by recursively 
threshold secret-sharing the 
shares

Note: linear secret-sharing

(2,3)

(2,3)

(1,3) (2,2)

Msg

Shares

Shares 
of shares

Fact: Access structures that admit linear secret-sharing are those 
which can be specified using “monotone span programs”



Efficiency
Main measure: size of the shares (say, total of all shares)

Shamir’s: each share is as as big as the secret (a single field 
element)
Naïve scheme for arbitrary monotonic access structure: if a 
party  is in N sets in B, N basic shares

N can be exponential in n (as B can have exponentially 

many sets)
Share size must be at least as big as the secret: “last share” 
in a minimal authorized set should contain all the information 
about the secret

Ideal: if all shares are only this big (e.g. Shamir’s scheme)
Not all access structures have ideal schemes

Non-linear schemes can be more efficient than linear schemes



A More General Formulation

Access structure consists of a monotonically “increasing” family A 

(allowed to learn), and a monotonically “decreasing” family F (forbidden 

from learning), with A ∩ F = Ø

T∈A ⇒ ∀S⊇T, S∈A.   T∈F ⇒ ∀S⊆T, S∈F.

For T ∉ A ∪ F, no requirements of secrecy or learning the message

E.g., Ramp secret-sharing scheme: A = { S ⊆ [n] | |S| ≥ t } and 

F = { S ⊆ [n] | |S| ≤ s }, where s < t

When s = t-1, a threshold secret-sharing scheme



Packed Secret-Sharing

RT RT

W
Reconstruction matrix RT 
with support in columns 

T, s.t. RT⋅W = A Random, conditioned  
on Ac = m
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Each share is a 
set of coordinates
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Shamir’s scheme can be generalized to a ramp scheme, such that longer 
secrets can be shared with the same share size

mj = f(zj) and si = f(ai) where {z1,…,zk} ∩ {a1,…,an} = Ø and f has degree 

t-1 (t being the reconstruction threshold)

Access structure:  A = { S : |S| ≥ t } and F = { S : |S| ≤ t-k }

T∈A if A spanned by WT, and T∈F if every row of A independent of WT


