
Advanced Tools from
 Modern Cryptography

Lecture 3
Secret-Sharing (ctd.)

Secret-Sharing

Last time

(n,t) secret-sharing

(n,n) via additive secret-sharing

Shamir secret-sharing for general (n,t)

Shamir secret-sharing is a linear
secret-sharing scheme

Linear Secret-Sharing

RT RT

W
Reconstruction vector
RT with support in T,
s.t. RT⋅W = [1 0 … 0]

Randomness used by
the sharing algorithm

 M

r

s

Each share is a
set of coordinates

Linear Secret-Sharing over a field: message and shares are field elements

Reconstruction by a set T ⊆ [n] : solve for MWT [M
r] = sT

Linear Secret-Sharing:
Computing on Shares

Suppose two secrets m1 and m2 shared using the
same secret-sharing scheme

Then for any p,q ∈ F, shares of p⋅m1 + q⋅m2 can be

computed locally by each party i as σi = p⋅σ1i + q⋅σ2i

W

 m1

 c11

 c12

 :

 c1,u

=

 m2

 c21

 c22

 :

 c2,u

p
q

:

σ1n

σ1

1

:

σ2n

σ2

1
p
q

Linear Secret-Sharing:
Computing on Shares

More generally, can compute shares of any linear
transformation

W

 m1

 c11

 c12

 :

 c1,u

=

 m2

 c21

 c22

 :

 c2,u

 mv

 cv1

 cv2

 :

 cv,u

Q Q

:

σ1n

σ1

1

:

σvn

σv1

:

σ2n

σ2

1

Each row
computed locally

by a party

Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

W

 m
c1
c2
:

ct-1

=

:

wn

w1

R

w1

:

wn

= m

Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

R

w1

:

wn

= m

 …

:

σvn

σv1

Z

 w1
 c11

 c12 …

 :

 c1,u

=

 w2
 c21

 c22

 :

 c2,u

 wn

 cv1

 cv2

 :

 cv,u

Party i picks ith column

:

σ1n

σ11

:

σ2n

σ21

R

Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

R

w1

:

wn

= m

 …

:

σvn

σv1

Z

 w1
 c11

 c12 …

 :

 c1,u

=

 w2
 c21

 c22

 :

 c2,u

 wn

 cv1

 cv2

 :

 cv,u

:

σ1n

σ11

:

σ2n

σ21

Party j computes jth row

R
=

:

zn

z1

 m
r1

r2

:

ru’

Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)

Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)

Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

Note that if a set of parties T⊆[n] is allowed to learn the secret by

either W or Z, then T learns m from either the shares it started with
or the ones it ended up with

Claim: If T⊆[n] is not allowed to learn the secret by both W and Z,

then T learns nothing about m from this process

Exercise

More General Access
Structures

Idea: For arbitrary monotonic access structure A, there is a

“basis” B of minimal sets in A. For each S in B generate an

(|S|,|S|) sharing, and distribute them to the members of S.

Works, but very “inefficient”

How big is B? (Say when A is a threshold access structure)

Total share complexity = ∑S∈B |S| field elements. (Compare

with Shamir’s scheme: n field elements in all.)

More efficient schemes known for large classes of access
structures

|B| =(
n

t)

t⋅(
n

t)

More General Access
Structures

A simple generalization of
threshold access structures

A threshold tree to specify the
access structure

Can realize by recursively
threshold secret-sharing the
shares

Note: linear secret-sharing

(2,3)

(2,3)

(1,3) (2,2)

Msg

Shares

Shares
of shares

Fact: Access structures that admit linear secret-sharing are those
which can be specified using “monotone span programs”

Efficiency
Main measure: size of the shares (say, total of all shares)

Shamir’s: each share is as as big as the secret (a single field
element)
Naïve scheme for arbitrary monotonic access structure: if a
party is in N sets in B, N basic shares

N can be exponential in n (as B can have exponentially

many sets)
Share size must be at least as big as the secret: “last share”
in a minimal authorized set should contain all the information
about the secret

Ideal: if all shares are only this big (e.g. Shamir’s scheme)
Not all access structures have ideal schemes

Non-linear schemes can be more efficient than linear schemes

A More General Formulation

Access structure consists of a monotonically “increasing” family A

(allowed to learn), and a monotonically “decreasing” family F (forbidden

from learning), with A ∩ F = Ø

T∈A ⇒ ∀S⊇T, S∈A. T∈F ⇒ ∀S⊆T, S∈F.

For T ∉ A ∪ F, no requirements of secrecy or learning the message

E.g., Ramp secret-sharing scheme: A = { S ⊆ [n] | |S| ≥ t } and

F = { S ⊆ [n] | |S| ≤ s }, where s < t

When s = t-1, a threshold secret-sharing scheme

Packed Secret-Sharing

RT RT

W
Reconstruction matrix RT
with support in columns

T, s.t. RT⋅W = A Random, conditioned
on Ac = m

c
s

Each share is a
set of coordinates

A m

=

Shamir’s scheme can be generalized to a ramp scheme, such that longer
secrets can be shared with the same share size

mj = f(zj) and si = f(ai) where {z1,…,zk} ∩ {a1,…,an} = Ø and f has degree

t-1 (t being the reconstruction threshold)

Access structure: A = { S : |S| ≥ t } and F = { S : |S| ≤ t-k }

T∈A if A spanned by WT, and T∈F if every row of A independent of WT

