Advanced Tools from
Modern Cryptography

Lecture 3
Secret-Sharing (ctd.)

Secret-Sharing

@ Last time
@ (n,t) secret-sharing
@ (n,n) via additive secret-sharing
@ Shamir secret-sharing for general (n,t)

@ Shamir secret-sharing is a linear
secret-sharing scheme

Linear Secret-Sharing

@ Linear Secret-Sharing over a field: message and shares are field elements

@ Reconstruction by a set T C [n] : solve W ["If\] =sT for M

Reconstruction vector
Rt with support in T,
s.t. R+W =[10 .. 0]

N
| Randomness used by Each share is a
the sharing algorithm set of coordinates

Linear Secret-Sharing:

Computing on Shares

@ Suppose two secrets m; and m; shared using the
same secret-sharing scheme

m: | M2
€11 Ca21
Ciz Cz2

oI

@ Then for any p,q € F, shares of p-m; + q-mz can be

o1 O
| |

Oi1n O2n

computed locally by each party i as 0i = p-0i1i+ q-O2;

Linear Secret-Sharing:
Computing on Shares

@ More generally, can compute shares of any linear
transformation

D N
m1 mz mv

iﬁu iﬁal Cv1
e J& 5&3‘

v
O1n O2n Ovn
Each row
computed locally

Switching Schemes

@ Can move from any linear secret-sharing scheme W to any other linear

secret-sharing scheme Z “securely” w
i) =

e "

@ Share each w; using scheme Z: (0iy,...,0in)— Z.Share(w;)
@ Locally each party j reconstructs using scheme W:
z; — W.Recon (0j,...,0nj)

Rl
3,
SN
- B
Pt
i3,

Switching Schemes

@ Can move from any linear secret-sharing scheme W to any other linear
R

-od

secret-sharing scheme Z “securely”

—— I ———— -

@ Given shares (w;, , Whn) = \;VfShare(m)

@ Locally each party j reconstructs using scheme W:
zj <— W.Recon (0j,...,0nj)

I

Party i picks ith column

Switching Schemes

@ Can move from any linear secret-sharing scheme W to any other linear

secret-sharing scheme Z “securely”

L

@ Given shares (wl, & wn) e WShare(m)

@ Share each w; using scheme Z: (0iy,...,0in)— Z.Share(w;)

Party j computes jth row

Switching Schemes

@ Can move from any linear secret-sharing scheme W to any other linear
secret-sharing scheme Z “securely”

@ Given shares (wi, ..., Wn) < W.Share(m)
@ Share each w; using scheme Z: (0ii,...,Tin)<— Z.Share(w;)
@ Locally each party j reconstructs using scheme W:

zj — W.Recon (03j,...,0nj)

@ Note that if a set of parties TC[n] is allowed to learn the secret by

either W or Z, then T learns m from either the shares it started with
or the ones it ended up with

@ Claim: If TC[n] is not allowed to learn the secret by both W and Z,
then T learns nothing about m from this process

@ EXxercise

More General Access
Structures

@ Idea: For arbitrary monotonic access structure A4, there is a
“basis” ‘B of minimal sets in A. For each S in B generate an
(Isl,ISl) sharing, and distribute them to the members of S.

--()

& How big is B? (Say when 7 is a threshold access structure)

@ Works, but very “inefficient”

@ Total share complexity = 3se5 S| field elements. (Compare

with Shamirs scheme: n field elements in all.) +.<")]
.l.

@ More efficient schemes known for large classes of access
structures

More General Access
Structures 1.

@ A simple generalization of -

threshold access structures
Shares

@ A threshold tree to specify the
access structure

@ Can realize by recursively Shares

A R
threshold secret-sharing the = ‘\ °F 2

shares

@ Note: linear secret-sharing

@ Fact: Access structures that admit linear secret-sharing are those
which can be specified using “monotone span programs”

Efficiency

@ Main measure: size of the shares (say, total of all shares)
@ Shamirs: each share is as as big as the secret (a single field
element)
@ Nalve scheme for arbitrary monotonic access structure: if a
party is in N sets in ‘B, N basic shares

@ N can be exponential in n (as B can have exponentially

many sets)

@ Share size must be at least as big as the secret: “last share”
in a minimal authorized set should contain all the information
about the secret
@ Ideal: if all shares are only this big (e.g. Shamirs scheme)
@ Not all access structures have ideal schemes

@ Non-linear schemes can be more efficient than linear schemes

A More General Formulation

@ Access structure consists of a monotonically “increasing” family A4

(allowed to learn), and a monotonically “"decreasing” family F (forbidden
from learning), with A n F =@

@ Te’A = VvS2T, SeA. TeF = VSCT, Se*.
@ For T ¢ A u F, no requirements of secrecy or learning the message

@ E.g., Ramp secret-sharing scheme: A ={S c [n] | IS| > t } and
F={ScnllIsl<s} wheres <t

@ When s = t-1, a threshold secret-sharing scheme

Packed Secret-Sharing

@ Shamirs scheme can be generalized to a ramp scheme, such that longer
secrets can be shared with the same share size

@ m;j = f(z;) and s; = f(a)) where {zi,...,zs} n {ai,...,an} = @ and f has degree
t-1 (+ being the reconstruction threshold)

@ Access structure: A ={S:|SI2t}and F=§{S:IS| < t-k }
A m

> -3 ":.o') .;~ . i :
o ' ',;."-'. ‘.!.‘.:. 'f. f';,_:
I !t‘ %7 I re

Reconstruction matrix Rt
with support in columns
¥ s.t. RT'W = A

i Random, conditioned Each share is a
on Ac = m set of coordinates

@ Te? if A spanned by Wr, and TeF if every row of A independent of W+

