Advanced Tools from Modern Cryptography

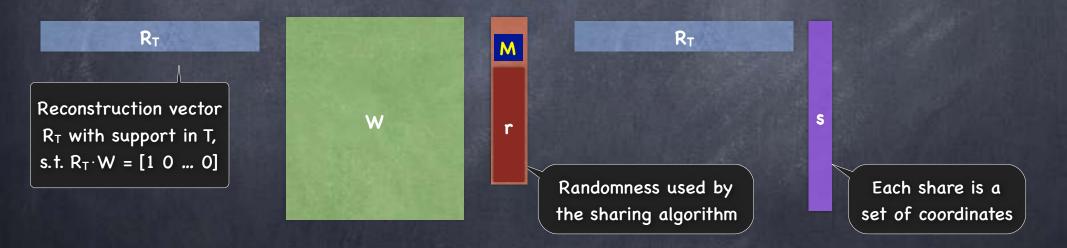
Lecture 3
Secret-Sharing (ctd.)

Secret-Sharing

- Last time
 - (n,t) secret-sharing
 - (n,n) via additive secret-sharing
 - Shamir secret-sharing for general (n,t)
 - Shamir secret-sharing is a linear secret-sharing scheme

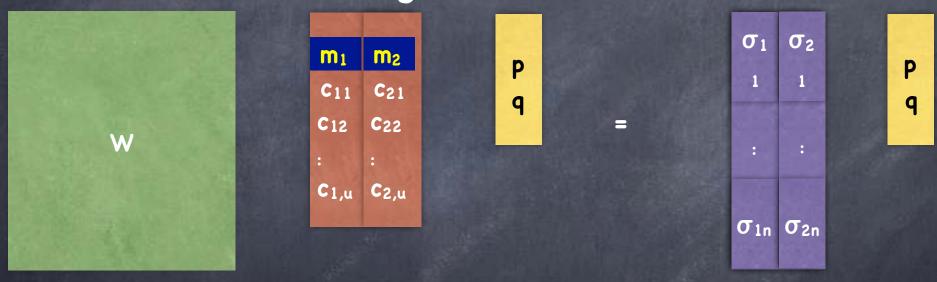
Linear Secret-Sharing

- Linear Secret-Sharing over a field: message and shares are field elements
- Reconstruction by a set T \subseteq [n] : solve W_T $\begin{bmatrix} M \\ r \end{bmatrix} = s_T$ for M



Linear Secret-Sharing: Computing on Shares

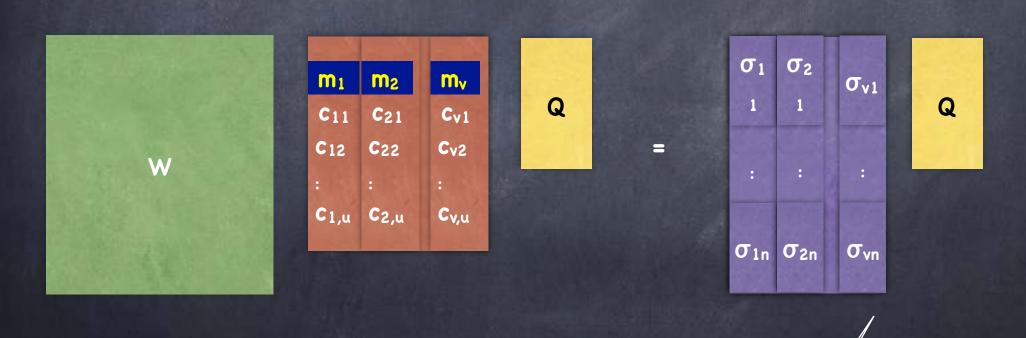
Suppose two secrets m₁ and m₂ shared using the same secret-sharing scheme



Then for any p,q \in F, shares of p·m₁ + q·m₂ can be computed <u>locally</u> by each party i as $\sigma_i = p \cdot \sigma_{1i} + q \cdot \sigma_{2i}$

Linear Secret-Sharing: Computing on Shares

More generally, can compute shares of any linear transformation



Each row computed locally

© Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"
w₁

Wn

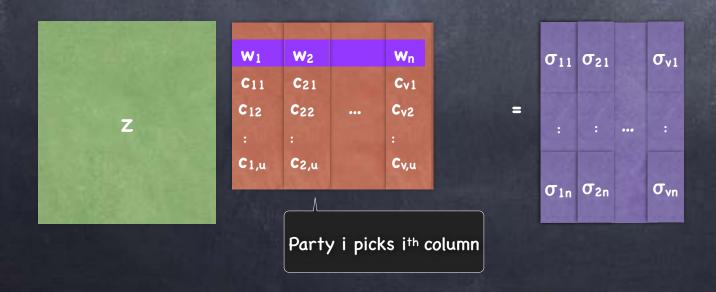
- Share each w_i using scheme Z: $(σ_{i1},...,σ_{in})$ ← Z.Share (w_i)
- Locally each party j reconstructs using scheme W:
 z_j ← W.Recon (σ₁j,...,σnj)



© Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"
w₁

Wn

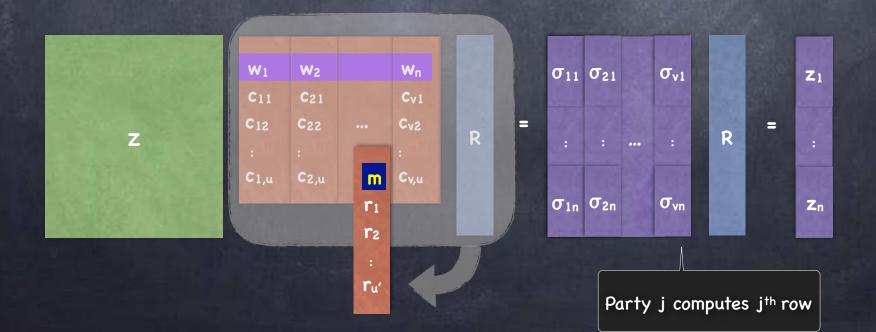
- \emptyset Given shares (w₁, ..., w_n) \leftarrow W.Share(m)
- Share each w_i using scheme Z: $(σ_{i1},...,σ_{in})$ ← Z.Share (w_i)
- Locally each party j reconstructs using scheme W:
 z_j ← W.Recon ($σ_{1j}$,..., $σ_{nj}$)



© Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"
w₁

Wn

- Ø Given shares (w₁, ..., wₙ) ← W.Share(m)
- Share each w_i using scheme Z: $(σ_{i1},...,σ_{in})$ ← Z.Share (w_i)
- Locally each party j reconstructs using scheme W:
 z_j ← W.Recon (σ_{1j},...,σ_{nj})



- Can move from any linear secret-sharing scheme W to any other linear secret-sharing scheme Z "securely"
- Ø Given shares (w₁, ..., wₙ) ← W.Share(m)
- Share each w_i using scheme Z: $(σ_{i1},...,σ_{in})$

 Z.Share (w_i)
- Locally each party j reconstructs using scheme W:
 z_j ← W.Recon (σ_{1j},...,σ_{nj})
- Note that if a set of parties T⊆[n] is allowed to learn the secret by either W or Z, then T learns m from either the shares it started with or the ones it ended up with
- Claim: If T⊆[n] is not allowed to learn the secret by both W and Z, then T learns nothing about m from this process
 - Exercise

More General Access Structures

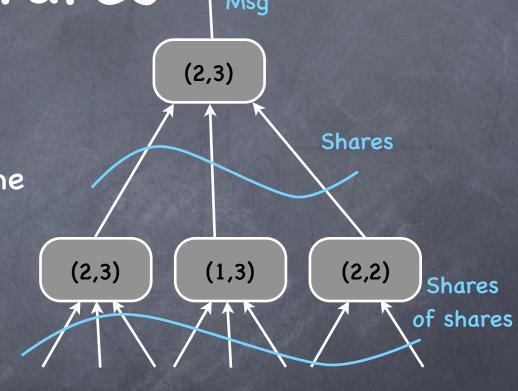
- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"
 - \bullet How big is \mathcal{B} ? (Say when \mathcal{A} is a threshold access structure)
 - Total share complexity = $\Sigma_{S \in \mathcal{B}}$ |S| field elements. (Compare with Shamir's scheme: n field elements in all.)
 - More efficient schemes known for large classes of access structures

More General Access Structures 1 MSg

A simple generalization of threshold access structures

A threshold tree to specify the access structure

Can realize by recursively threshold secret-sharing the shares



Note: <u>linear</u> secret-sharing

Fact: Access structures that admit linear secret-sharing are those which can be specified using "monotone span programs"

Efficiency

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)
 - \circ Naïve scheme for arbitrary monotonic access structure: if a party is in N sets in \mathcal{B} , N basic shares
 - $oldsymbol{\circ}$ N can be exponential in n (as $\mathcal B$ can have exponentially many sets)
 - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
 - Ideal: if all shares are only this big (e.g. Shamir's scheme)
 - Not all access structures have ideal schemes
 - Non-linear schemes can be more efficient than linear schemes

A More General Formulation

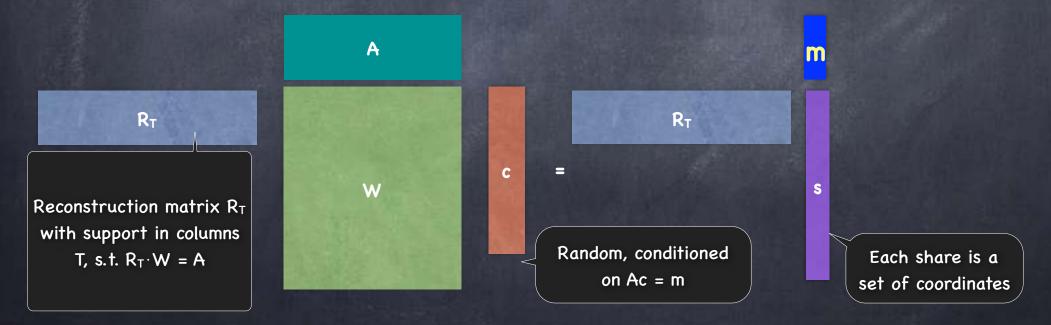
- Access structure consists of a monotonically "increasing" family $\mathcal A$ (allowed to learn), and a monotonically "decreasing" family $\mathcal F$ (forbidden from learning), with $\mathcal A \cap \mathcal F = \emptyset$

 - \bullet For T $\not\in \mathcal{A} \cup \mathcal{F}$, no requirements of secrecy or learning the message
- **8** E.g., Ramp secret-sharing scheme: $\mathcal{A} = \{ S \subseteq [n] \mid |S| \ge t \}$ and $\mathcal{F} = \{ S \subseteq [n] \mid |S| \le s \}$, where s < t
 </p>
 - When s = t-1, a threshold secret-sharing scheme

Packed Secret-Sharing

- Shamir's scheme can be generalized to a ramp scheme, such that longer secrets can be shared with the same share size

 - Access structure: $A = \{S : |S| ≥ t\}$ and $F = \{S : |S| ≤ t-k\}$



3 T∈ \mathcal{A} if A spanned by W_T, and T∈ \mathcal{F} if every row of A independent of W_T