Advanced Tools from
Modern Cryptography

Lecture 4
Secure Multi-Party Computation:
Passive Corruption,
Linear Functions

Must We Trust €ly'/ 7

@ Can we have an auction without
an auctioneer?!

@ Declared winning bid should
be correct

@ Only the winner and winning
bid should be revealed

Using data without sharing?

B Hospitals which cant share their
patient records with anyone

3 But want to data-mine on
combined data

Secure Function Evaluation

B A general problem

@ To compute a function of private
inputs without revealing
information about the inputs

P Beyond what is
revealed by the
function

Poker With No Dealer?

@ Need to ensure

3 Cards are shuffled and
dealt correctly

@ Complete secrecy

@ No “cheating” by
players, even if
they collude

@ No universally trusted
dealer

The Ambitious Goal

BWithout any trusted party,

securely do

@ Distributed Data mining

B E-commerc
B Network G
P E-voting

P Secure fun

D...

Secure

Multi-Party Computation
(MPC)

ny task that

ﬁ uses a trusted |

Mental Poker

S ——— #__A{T—\ p J:b#:"- -
R
- —’E"‘—&.

Adi Shanmr, Ronald L, Rivest
and Leonard M. Adleman

WaEEAETSETTS INSTIIUTE OF TECEWOLCGY

NERTREACT

(an s potentia’y, didbor=s plavers plla_v. a flair game of
E R | R Ll:.'rng arr m‘i — b mmamT = avoT iz plhowe?
TIE p@per pruieoirz At T T D EMEWECE '

1 N Figomees iz lbemaGeal proad soialied,) -

2 Yes. Cormeramd remiy L1 orotceod given.

o
.
Ada

-

Emulating Trusted
Computation

@ Encryption/Authentication allow us to emulate a
trusted channel

@ Secure MPC: to emulate a source of trusted
computation

@ Trusted means it will not “leak” a party’s
information to others

@ And it will not cheat in the computation

@ A tool for mutually distrusting parties to collaborate

Is it for Real?

@ Getting there! Many implementations/platforms
@ Fairplay, VIFF
@ Sharemind
@ SCAPI
@ Obliv-C
@ JustGarble
@ SPDZ/MASCOT
@ OblivM
d ..

@ multipartycomputation.com/mpc-software

Is it for Real?

@ And many practical systems using some form of MPC

@ Danish company Partisia with real-life deployments (since
2008)

@ sugar beet auction, electricity auction, spectrum auction,
key management

@ A prototype for credit rating, supported by Danish banks
@ A proposal to the Estonian Tax & Customs Board
@ A proposal for Satellite Collision Analysis

@ Legislation in the US to use MPC for applications like a
“higher education data system”

.=

MPC

@ Several dimensions
@ Passive (Semi-Honest) vs. Active corruption
@ Passive: corrupt parties still follow the protocol
@ Honest-Majority vs. Unrestricted corruption

@ Information-theoretic vs. Computational security

g

Security Definition

@ Simplest case: Passive corruption, Information-theoretic security
@ In general, need honest-majority (or similar restriction)

@ In passive corruption, the adversary can see the internals of all
the corrupt parties, but cannot control their actions

@ Main concern will be secrecy (correctness is automatic,
provided the protocol is corrupt in the absence of corruption)

@ Will ask for Perfect Secrecy

@ Similar to secret-sharing

Security Definition

@ Multiple parties in a protocol could be corrupt
@ Collusion
@ Modelled using a single adversary who corrupts the parties
@ Its view contains all the corrupt parties’ views
@ Security guarantee given against an “adversary structure”

@ Sets of parties that could be corrupt together

Security Definition

@ For secret sharing we needed to formalise “x is secret”

@ Now want to say: x is secret except for f(x) which is revealed

@ v x, X' s.t. f(x)=Ff(x’), { view | input=x} = { view | input=x" }

@ Include in f(x) also the coordinates of x that correspond to
corrupted parties

@ Later: More complicated when considering active corruption
and/or computational security

MPC for Linear Functions

@ Client-server setting

)11)12)13)14)15 Clients with inputs
O ®

@ o ©

May be

Servers same

parties

O O Clients with outputs

fl(Xl,...,Xs) \l, \l, Fz(xl,...,)(s)

MPC for Linear Functions:
Using Linear Secref-Sharing

>11 2 5

Q Clients with inputs
Share /
\

Servers

Reconsh”umL O Clients with outputs

F1(X1,...,X5) \l, \l, Fz(Xl by

MPC for Linear Functions:
Using Linear Secret-Sharing

X1 | X2 Xv O11 021 O M1 M1
Ci1 C2: Cvi
Ci2 Ca2 Cv2 = = : :

0 4 -.-:_1 Yi AR
Ciu Cou Cuu

Oin O2n Ovn Min TM2n
Each column with Each row given to Each column sent

an input client a server to an output client

MPC for Linear Functions:
Using Linear Secref-Sharing

View of the adversary (corrupt parties)

,‘
O1in O2n Ovn ﬂln'

LCRE 9 gl |

Each column with Each row given to Each column sent
an input client a server to an output client

Security

@ Adversary allowed to corrupt any set of input and output clients
and any subset T of servers s.t. T is not a privileged set (i.e., not
in the access structure) for the secret-sharing scheme

@ View of adversary should reveal nothing beyond the inputs and
outputs of the corrupted clients

@ Claim: Consider any input y of corrupt clients. If x, x’ of
uncorrupted clients such that for each corrupt output client i
fi(x,y)=Ffi(x".y), then the view of the adversary in the two cases
are identically distributed

@ Because for any given view of the adversary, in each of the
two cases, the solution space of randomness is non-empty
and then it has the same dimension

@ Exercise

MPC for General Functions?

@ So far: a 2-round protocol for any linear function
@ Could use additive secret-sharing
@ How about other functions?

@ Any function over a finite field can be computed using addition
and multiplication

@ Interested in functions which are efficiently computable

@ Arithmetic circuit: representation of the computation using
addition and multiplication

@ Goal: MPC Protocol for f, which is efficient if we are given an
efficient arithmetic circuit for f

MPC from Shamir Secret-Sharing:
Overview

@ A function f given as a program with linear steps and multiplications:
arithmetic circuit (over a finite field)

o BB

Clients with inputs

//<>

Linear
Need n > 2d parties. steps Servers
Security against d
colluding parties Mult. > Mult. Mult.
Reconstruct

Client with output

3 Hlocally multiplying degree d shares of M; and M; gives a degree 2d
share of M;-M; . Then switch back to a degree d share (involves

communicating deg. d shares of deg. 2d shares)

