Advanced Tools from
Modern Cryptography

Lecture 6
Secure Multi-Party Computation without Honest Majority:
"GMW" Protocol

MPC without Honest-Majority

@ Plan (Still sticking with passive corruption):

@ Two protocols, that are secure computationally
@ The “passive-GMW" protocol for any number of parties
@ A 2-party protocol using Yaos Garbled Circuits

@ Both rely on a computational primitive called Oblivious Transfer

@ Today: OT and Passive-GMW

Oblivious Transfer

@ Pick one out of two,
without revealing
which

3 Intuitive property:
transfer partial
information
“obliviously”

@Xt))f | : 2 CG

Is OT Possible?

@ No information theoretically secure 2-party protocol for OT

@ Because OT can be used to carry out information-
theoretically secure 2-party AND (coming up)

@ Computationally secure OT protocols exist under various
computational hardness assumptions

@ Will define computational security of MPC later, comparing
the protocol to the ideal functionality

An OT Protocol

(against passive corruption

@ Using (a special) public-key
encryption
@B In which one can sample a

public-key without knowing
secret-key

(SKb, PKp) < KeyGen

.. .'
xp=Dec(cp;SKp

@ cip inscrutable to a
passive corrupt receiver

®Sender learns
nothing about b

Xb

Why is OT Useful?
Nalve 2PC from OT

@ Say Alices input x, Bob's input y, and only Bob should learn f(x,y)

@ Alice (who knows x, but not y) prepares a table for f(x,-) with
D = 2l entries (one for each vy)

@ Bob uses y to decide which entry in the table to pick up using
1-out-of-D OT (without learning the other entries)

@ Bob learns only f(x,y) (in addition to y). Alice learns nothing

beyond x. Secure protocol for f using
access to ideal OT

@ OT captures the essence of MPC: v
Secure computation of any function f can be reduced to OT

@ Problem: D is exponentially large in |yl

@ Plan: somehow exploit efficient computation (e.g., circuit) of f

Goldreich-Micali-Wigderson (1987).
As simplified in later work.

Passive GMW

@ Passive secure MPC based on OT, without any other computational
assumptions

@ Will assume that a trusted party is available to carry out OT
between any pair of parties (replaced by a cryptographic
protocol, later)

@ Tolerates any number of corrupt parties
@ Idea: Computing on additively secret-shared values

@ For a variable (wire value) s, will write [s]i to denote its share
held by the ith party

Computing on Shares: 2 Parties

@ Let gates be + & X (XOR & AND for Boolean circuits)

@ Plan: Similar to BGW: shares of each wire value will be
computed, with Alice holding one share and Bob the other.
At the end, Alice sends her share of output wire to Bob.

@ w = u + v : Each one locally computes [w]i = [u]i + [V];

Wl
|
|

[wl2
|

[uls vl u v [ul2 [v]2

Computing on Shares: 2 Parties

@ What about w = u X v ?

3 [wh+[wh=([u:+[u2)Xx(:+[v]2)

@ Alice picks [w]; and lets Bob compute [w]; using the naive
(proof-of-concept) protocol

@ Note: Bobs input is ([u]2,[v]z). Over the binary field, this
requires a single 1-out-of-4 OT.

Wl / w \ [w]2

[uls vl u v [ul2 [v]2

Passive GMW

@ Secure?
@ View of Alice:
@ Input x and random values it picks through out the protocol v
@ View of Bob:
@ Input y and random values it picks through out the protocol
@ A random value (picked via OT) for each wire out of a x gate
@ f(x,y) - own share, for the output wire
@ This distribution is the same for x, x" if f(x,y)=f(x",y) v

@ Exercise: What goes wrong in the above claim if Alice reuses [w];
for two x gates?

Computing on Shares: m Parties

@ m-way sharing: s = [s]; +...+ [S]m
@ Addition, local as before

@ Multiplication: For w = u X v
Wl +..+ [Wln = ([uli +.4 [ulm) X (V1 +..4 [VIm)

@ Party i computes [u]i[v];

@ For every pair (i,j), i#j, Party i picks random aj; and lets
Party j securely compute bj; s.t. ajj + bjj; = [u]i[v]; using the
naive protocol (a single 1-out-of-2 OT)

@ Party i sets [wli = [ulilvli + =i (aii + bji)

MPC for Passive Corruption

@ Story so far:

@ For honest-majority: Information-theoretically secure protocol,
using Shamir secret-sharing [BGW]

@ Without honest-majority: Using Oblivious Transfer (OT), using
additive secret-sharing [GMW]

@ Up next

Oblivious Linear-function Evaluation
(OLE) for large fields (Exercise)

@ A 2-party protocol (so no honest-majority) using Oblivious
Transfer and Yaos Garbled Circuits

@ Uses additional computational primitives and is limited to
arithmetic circuits over small fields (e.g., boolean circuits)

@ Needs just one round of interaction

