Advanced Tools from
Modern Cryptography

Lecture 8
Computational Security:
Indistinguishability, Simulation



Security Definitions

@ So far: Perfect secrecy

@ Achieved in Shamir secret-sharing, passive BGW and passive

GMW (given a trusted party for OT)

@ But for 2PC using Yaos Garbled circuit (even given a trusted party
for OT) security only against computationally bounded adversary

@ We havent defined such security yet!
@ Plan
@ Computational Indistinguishability

@ Simulation-based security

/-

Because, the obvious
definition obtained by

~

replacing perfect secrecy
by computational secrecy

<k turns out to be weak y




Indistinguishability
n-

V
@ Distribution ensembles {A«}, Bk} computationally indistinguishable
if v Probabilistic Polynomial Time tests T, 3 negligible v(k) s.t.

| prx<—Ak[T(x)=1] i Prx<—3k[T(X)=l] l hs V(k)

. .

X — Ak X < Bk

<@ <@




Pseudorandomness
Generator (PRG)

@ Takes a short seed and (deterministically) outputs a long string
@ Gy {0,1}k—4§0,1}) where n(k) > k

@ Security definition: 1G(X)}x—0,13¢ = Un()

XH{CM (

. k «— 0’1 n
z — Gi(x) {F':'k(.X)}x {?,1} .CcTnno’.r be z {0,1}
statistically indistinguishable
l from Uni unless n(k) < k (Why?) l

vV PPT @
REAL = IDEAL

REAL IDEAL



Pseudorandom Function (PRF)

@ A compact representation of an exponentially long (pseudorandom)
string

@ Allows “random-access” (instead of just sequential access)

@ A function F(s;i) outputs the ith block of the pseudorandom
string corresponding to seed s

@ Exponentially many blocks (i.e., large domain for i)

If the domain of i is polynomial sized (as is sufficient
for Garbled Circuits), can implement PRF using a PRG

@ Need to define pseudorandomness for a function (not a string)

@ Pseudorandom Function

@ Idea: the view of an adversary arbitrarily interacting with the
function is indistinguishable from its view when interacting with

a random function



Pseudorandom Function (PRF)

- T o
F(s,) R()

%
<@

F: §0,13x§0,1}m0 —40, 1}
"® is a PRF if

v PPT A
v PPT @
REAL ~ IDEAL

REAL IDEAL



Security for MPC

@ Recall: For passive security, secrecy is all the matters

@ For a 2-party functionality f, with only Bob getting the output,
perfect secrecy against corrupt Bob:
i.e., V X, X', ¥ s.t., f(x,y) = f(x',y), viewson(X,y) = viewson(X',y)

@ In particular, if (y, f(x,y)) uniquely determines x (i.e., if
f(x’,y)=f(x,y) = x'=x), then OK for view to reveal x

@ In the computational setting, just replace = with = ?

@ We should ask for more! [Makes sense only for the view, not F]

@ E.g., fis a decryption algorithm, with key x and ciphertext y

@ Often, a (long enough) ciphertext and message uniquely

determines the key Because,
uniquely determines
@ But not OK to reveal the key to Bob! T iievealsl




Security for MPC

@ Compare the protocol execution with an “ideal” execution
involving an incorruptible trusted party

@ Trusted party collects all inputs, carries out all computation and
delivers the outputs (over private channels)

@ Ideal is the best we can hope for

@ If anything that could "go wrong” with the protocol execution
could happen with the ideal execution too, then it is not the
protocol’s fault

@ Applies to active, as well as passive corruption

@ Applies to computational as well as information-theoretic
security



Simulation-Based Security

y .

1€

C i@
A- 0 A

o proto %
I - Protocol is v
secure (and g
correct) if: A
&
I 3 g s.t. ?

V@

output of @

is distributed
identically in
REAL and IDEAL

proto

IDEAL REAL




Simulation-Based Security

Protocol may also use (simpler)
functionalities, like OT

Functionality

\
I

IDEAL

<(---r---)>

Computational:
all PPT

V
Sequre (and
correct) if: A
4
3 g s.t. ?

V&

output of @

is distributed

identically in REAL
REAL and IDEAL

proto

®
A




Variants of Security

@ Same definitional framework to define various levels of security!
@ Passive adversary: corrupt parties stick to the protocol

@ Will require corrupt parties in the ideal world also to use
the correct inputs/outputs

@ Universally Composable security: Active adversary interacting
with the environment arbitrarily

@ Standalone security: environment is not “live.” Interacts with the
adversary before and after (but not during) the protocol

@ Super-PPT simulation: meaningful when the “security” of ideal
world is information-theoretic

@ Aside: Non-simulation-based security definitions for MPC are also
useful for intermediate tools, but often too subtle for final
applications



Example: Coin-Tossing

@ Functionality Fein sSamples a uniform random bit and sends it to
all parties

@ Security against passive corruption is trivial (Why?)

@ Fact: Impossible to (even stand-alone) securely realise against
computationally unbounded active adversaries

@ Protocol for stand-alone security against PPT adversaries using
commitment

@ If given ideal commitment functionality, information-theoretic
security



Commitment

® Commit now,
reveal later

® Intuitive properties:

hiding and binding

COMMIL

@

IDEAL World
30 Day Free Trial

&T)MMIT”



Example: Coin-Tossing

@ A (fully) secure 2-party protocol for coin-tossing, given an ideal
commitment functionality Feom

@ Alice sends a bit a to Fcom- (Bob gets “committed” from Feom)

@ Bob sends a bit b to Alice

@ Alice sends “open” to Fcom. (Bob gets a from Fcom)

@ Both output c=a®b

@ Simulator:
@ Will get a bit ¢ from Fcoin. Needs to simulate the corrupt

partys view in the protocol, including the interaction with Fcom

@ If Alice corrupt: Get a from Alice. Send b = a®c.

@ If Bob corrupt: Send “committed”. Get b. Send a = bac.

@ Perfect simulation: Environment + Adversarys view is identically
distributed in REAL and IDEAL (verify!), and hence so is
Environments output



