Advanced Tools from
Modern Cryptography

Lecture 9
Zero-Knowledge Proofs



Zero-Knowledge Proof

@ In cryptographic settings, often need to be able to verify various claims
@ e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c
@ Proof 1: Reveal a,b,c and how they get encrypted into A,B,C

@ Proof 2: Without revealing anything at all about a,b,c except the fact
that a=b+c ?

@ Zero-Knowledge Proof!

@ Important application to secure multi-party computation: to upgrade the
security of MPC protocols from security against passive corruption to
security against active corruption

@ (Next time)



An Example

3@ Coke in bottle or can

® Prover claims: coke in
bottle and coke in can are
different

B ZK proof:

® prover tells whether

Pour into
from can

or bottle

cup was filled from
-

can or bottle

repeat till verifier
® ad -5 can/bottle

-

IS convinced




Commitment

@ The functionality of Commitment:

@ Committing to a value: Alice puts the message in a box, locks it, and
sends the locked box to Bob, who learns nothing about the message

@ Reveadling a value: Alice sends the key to Bob. At this point she cant
influence the message that Bob will get on opening the box.

@ Implementation in the Random Oracle Model: Commit(x) = H(x,r) where r is
a long enough random string, and H is a random hash function (available
as an oracle). To reveal, send (x,r).

@ A\ ROM is a heuristic model: Can do provably impossible tasks in this
model!

@ An Example: To prove that the nodes of a graph can
be coloured with at most 3 colours, so that adjacent
nodes have different colours




A 2K Proof for Graph
Colourability

M Uses a commitment

protocol as a subroutine

B At least 1/#edges
probability of catching a
wrong proof

M Repeat many times

-\’q..

commit 7 (’F-nck{ ran&om‘
with independent colour £ X : o b edge
~~ eage
- // 60*“ < W
permutations P e o N
(0 o reveal @ p distinct

<
. colours?




ZK Proofs Vocabulary

Statements: Of the form “3aw s.t. relation R(x,w) holds”, where R defines a class of
statements, and x specifies the particular statement (which is a common input to
prover and verifier)

@ e.g., Given a graph G, 3 a colouring ¢ s.t. Valid(G,$) holds

@ The relation R can be efficiently verified (polynomial time in size of x)

@ SetL = {x/|3awR(xw) holds } is a language in NP

@ w is called a “witness” for xelL
Completeness: If prover & verifier are honest, for all xeL, and prover given a valid
witness w, verifier will always accept
Soundness: If x¢L, no matter what a cheating prover does, an honest verifier will
reject (except with negligible probability)

® Proof-of-Knowledge: A stronger soundness notion
Zero-Knowledge: A (corrupt) verifiers view can be simulated (honest prover, xeL)

Soundness can be required to hold even against computationally unbounded provers
@ ZK Argument system: Like a ZK proof system, but soundness only against PPT
adversaries



ZK Property

Classical definition uses simulation
only for corrupt receiver;
. and uses only standalone security:

y s ~ Environment gets only a transcript at
> - the end

Statistical )

ZK: Allow
unbounded
environment

[

l‘ .

L 4

Secure (ant
correct) if:

<

B

—

peo
(_,{.‘4'

output of @

in REAL and
IDEAL are
almost identical

REAL
IDEAL




Simplified Picture

B 2K Property:

B A corrupt verifier's view
could have been
“simulated”

BV adversarial strategy,

3 a simulation strategy

which produces an
indistinguishable view

@ Completeness and
soundness defined
separately




Two-Sided Simulation

® Require simulation also when prover is corrupt
® Then simulator is a witness extractor
® Adding this (in standalone setting) makes it an Argument of Knowledge

B v ‘ Proof of Knowledge: w
g unbounded prover & DA
— O —>A P D ———

simulator, but

require sim fo run
. . 4
. X in comparable time

< Securell(and
correct) if: ‘
»ay A
v ?

\) 3 PRE & s.t.

vV PPT @
output of @

in REAL and
IDEAL are
almost identical

REAL
IDEAL




Some ZK Proof Techniques

Classic protocols for NP complete problems

@ e.g., graph 3 colorability (with standalone-secure commitment,
instantiated using, say, one-way permutations)

@ Any NP language L has a ZK proof system via reduction to an NP
complete problem

More generally, by committing to a “probabilistically checkable proof”
@ Can improve the communication efficiency

More efficient protocols for specific NP languages (avoiding the overhead
of reduction to NP complete languages)

@ e.g., Proof of equality of discrete logs (coming up)
Using MPC as a robust encoding

@ “MPC-in-the-head” (later)
Non-interactive variants (later)

@ Often in the random-oracle model



Discrete Logarithm

In a cyclic group, all elements can be written as g9, g!, ..., gn-!
Given DeG and a generator g, 3 unique d € [O,n-1] s.t. D = gd
@ Discrete logarithm of D w.r.t. g

In many groups, finding the discrete logarithm is computationally
hard

Many commitment schemes, encryption schemes, collision-resistant
hash functions etc. based on the hardness of discrete logarithm
and related problems



Honest-Verifier ZK Proofs

@ A ZK Proof of knowledge of discrete log of R=gr

@ P~V U:=gH
V—P: v
P—V: w:=rv + u (modulo order of the group)
V checks: gv = RW

@ Proof of Knowledge:

@ Firstly, g = RWW = w = rv+u, where U = gu
@ If after sending U, P could respond to two different values
of v: wi =rv; + uand wz = rvz + u, then can solve for r

@ HVZK: simulation picks w, v first and sets U = gv/Rv



HVZK and Special Soundness

@ HVZK: Simulation for honest (passively corrupt) verifier

@ e.g. in PoK of discrete log, simulator picks (vw) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

@ Special soundness: given (Uyv,w) and (U,v' ,w’) s.t. v#v' and both
accepted by verifier, can derive a witness

4 4 3 4 4
@ e.g. solve r from w=rv+u and w'=rv'+u (given vw,v' ,w’)

@ Proof of knowledge (in stand-alone setting): for each U s.t.
prover has significant probability of being able to convince, a
simulator can extract r from the prover with overwhelming
probability (using “rewinding”)

@ Can amplify soundness using parallel repetition: still 3 rounds



Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for ((g,R).(C,D)),
i.e., R = gr and D = Cr [Chaum-Pederson]

P—V: (U,T) := (g4,CY)

V—P: v

P—V: w = rv+u

V checks: g¥=RvU and C¥ = DT

Proof of Knowledge:
@ g¥=R'U, C¥=D'T = W = rv+u = r'v+u’
where U=g4, T=g* and R=gr, D=Cr

@ If after sending (U,T) P could respond to two different values
of virvi+u=rvi+u and rvz + u=rvz + u’, then r=r'
HVZK: simulation picks w, v first and sets U=g+%/RY, T=Cw/Dv



