Advanced Tools from Modern Cryptography

Lecture 9 Zero-Knowledge Proofs

Zero-Knowledge Proof

In cryptographic settings, often need to be able to verify various claims

- e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c
- Proof 1: Reveal a,b,c and how they get encrypted into A,B,C
- Proof 2: Without revealing anything at all about a,b,c except the fact that a=b+c ?
 - Zero-Knowledge Proof!
- Important application to secure multi-party computation: to upgrade the security of MPC protocols from security against passive corruption to security against active corruption
 - Ø (Next time)

An Example

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

ZK proof:

prover tells whether cup was filled from can or bottle

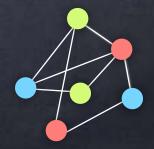
repeat till verifier is convinced Pour into from can or bottle

can/bottle

Commitment

The functionality of Commitment:

- Committing to a value: Alice puts the message in a box, locks it, and sends the locked box to Bob, who learns nothing about the message
- Revealing a value: Alice sends the key to Bob. At this point she can't influence the message that Bob will get on opening the box.
- Implementation in the <u>Random Oracle Model</u>: Commit(x) = H(x,r) where r is a long enough random string, and H is a <u>random</u> hash function (available as an oracle). To reveal, send (x,r).
 - MOM is a <u>heuristic</u> model: Can do provably impossible tasks in this model!
- An Example: To prove that the nodes of a graph can be <u>coloured</u> with at most 3 colours, so that adjacent nodes have different colours



A ZK Proof for Graph Colourability

G, colouring

Uses a commitment protocol as a subroutine

At least 1/#edges
 probability of catching a wrong proof

Repeat many times
 with independent colour
 permutations

commit edge reveal colours?

ZK Proofs Vocabulary

- Statements: Of the form "∃w s.t. relation R(x,w) holds", where R defines a class of statements, and x specifies the particular statement (which is a common input to prover and verifier)

 - The relation R can be efficiently verified (polynomial time in size of x)
 Set L = { x | ∃w R(x,w) holds } is a language in NP
 - w is called a "witness" for $x \in L$
- Completeness: If prover & verifier are honest, for all $x \in L$, and prover given a valid witness w, verifier will always accept
- Soundness: If x \no matter what a cheating prover does, an honest verifier will reject (except with negligible probability)
 - Proof-of-Knowledge: A stronger soundness notion
- **Zero-Knowledge**: A (corrupt) verifier's view can be simulated (honest prover, $x \in L$)
- Soundness can be required to hold even against computationally unbounded provers
 - ZK Argument system: Like a ZK proof system, but soundness only against PPT adversaries

ZK Property

x,w

i'face

IDEAL

R

Env

Classical definition uses simulation only for corrupt receiver; and uses only standalone security: Environment gets only a transcript at the end

proto

Statistical ZK: Allow unbounded environment

Secure (and correct) if: ∀ PPT ↓ ∃ PPT ↓ s.t. ∀ PPT ↓ output of ● in REAL and IDEAL are

almost identical

REAL

Env

proto

Simplified Picture

xinL

Ah, got it!

Ah, got it!

42

42

ZK Property:

A corrupt verifier's view could have been "simulated"

A adversarial strategy,
 J a simulation strategy
 which produces an
 indistinguishable view
 Completeness and
 soundness defined
 separately

Two-Sided Simulation

Require simulation also when prover is corrupt

• Then simulator is a witness extractor

i'face

• Adding this (in standalone setting) makes it an Argument of Knowledge

proto

proto

REAL

Env

Proof of Knowledge: unbounded prover & simulator, but require sim to run in comparable time

> Secure (and correct) if: ∀ PPT ↓ ∃ PPT ↓ s.t. ∀ PPT ↓ output of ↓ in REAL and IDEAL are almost identical

IDEAL

x,w

X

R

X

Env

Some ZK Proof Techniques

Classic protocols for NP complete problems

- e.g., graph 3 colorability (with standalone-secure commitment, instantiated using, say, one-way permutations)
- Any NP language L has a ZK proof system via reduction to an NP complete problem
- More generally, by committing to a "probabilistically checkable proof"
 - Can improve the communication efficiency
- More efficient protocols for specific NP languages (avoiding the overhead of reduction to NP complete languages)
 - e.g., Proof of equality of discrete logs (coming up)
- Using MPC as a robust encoding
 - MPC-in-the-head" (later)
- Mon-interactive variants (later)
 - Ø Often in the random-oracle model

Discrete Logarithm

- In a cyclic group, all elements can be written as g⁰, g¹, ..., g^{n−1}
- Given D∈G and a generator g, ∃ unique d ∈ [0,n-1] s.t. D = g^d
 - Discrete logarithm of D w.r.t. g
- In many groups, finding the discrete logarithm is computationally hard
- Many commitment schemes, encryption schemes, collision-resistant hash functions etc. based on the hardness of discrete logarithm and related problems

Honest-Verifier ZK Proofs

A ZK Proof of knowledge of discrete log of R=g^r

- P \rightarrow V: U := g^u
 V \rightarrow P: v
 P \rightarrow V: w := rv + u (modulo order of the group)
 V checks: g^w = R^vU
- ◊ Proof of Knowledge:
 ◊ Firstly, g^w = R^vU ⇒ w = rv+u, where U = g^u
 ◊ If after sending U, P <u>could</u> respond to two different values of v: w₁ = rv₁ + u and w₂ = rv₂ + u, then can solve for r
 ◊ HVZK: simulation picks w, v first and sets U = g^w/R^v

HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks (v,w) first and computes U (without knowing u). Relies on verifier to pick v independent of U.
- Special soundness: given (U,v,w) and (U,v',w') s.t. v≠v' and both accepted by verifier, can derive a witness
 - e.g. solve r from w=rv+u and w'=rv'+u (given v,w,v',w')
 - Proof of knowledge (in stand-alone setting): for each U s.t. prover has significant probability of being able to convince, a simulator can extract r from the prover with overwhelming probability (using "rewinding")
 - Can amplify soundness using parallel repetition: still 3 rounds

Honest-Verifier ZK Proofs

- ZK PoK to prove equality of discrete logs for ((g,R),(C,D)), i.e., R = g^r and D = C^r [Chaum-Pederson]
- ◊ P→V: (U,T) := (g^u,C^u)
 ∨→P: v
 P→V: w := rv+u
 V checks: g^w = R^vU and C^w = D^vT
- Proof of Knowledge:

0

• $g^{w}=R^{v}U, C^{w}=D^{v}T \implies w = rv+u = r'v+u'$ where $U=g^{u}, T=g^{u'}$ and $R=g^{r}, D=C^{r'}$

If after sending (U,T) P could respond to two different values of v: rv₁ + u = r'v₁ + u' and rv₂ + u = r'v₂ + u', then r=r'
 HVZK: simulation picks w, v first and sets U=g^w/R^v, T=C^w/D^v