
Advanced Tools from
 Modern Cryptography

Lecture 9
Zero-Knowledge Proofs

Zero-Knowledge Proof

In cryptographic settings, often need to be able to verify various claims

e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c

Proof 1: Reveal a,b,c and how they get encrypted into A,B,C

Proof 2: Without revealing anything at all about a,b,c except the fact
that a=b+c ?

Zero-Knowledge Proof!

Important application to secure multi-party computation: to upgrade the
security of MPC protocols from security against passive corruption to
security against active corruption

(Next time)

Commitment
The functionality of Commitment:

Committing to a value: Alice puts the message in a box, locks it, and
sends the locked box to Bob, who learns nothing about the message

Revealing a value: Alice sends the key to Bob. At this point she can’t
influence the message that Bob will get on opening the box.

Implementation in the Random Oracle Model: Commit(x) = H(x,r) where r is
a long enough random string, and H is a random hash function (available
as an oracle). To reveal, send (x,r).

⚠ ROM is a heuristic model: Can do provably impossible tasks in this

model!

An Example: To prove that the nodes of a graph can
be coloured with at most 3 colours, so that adjacent
nodes have different colours

ZK Proofs Vocabulary
Statements: Of the form “∃w s.t. relation R(x,w) holds”, where R defines a class of

statements, and x specifies the particular statement (which is a common input to
prover and verifier)

e.g., Given a graph G, ∃ a colouring φ s.t. Valid(G,φ) holds

The relation R can be efficiently verified (polynomial time in size of x)
Set L = { x | ∃w R(x,w) holds } is a language in NP

w is called a “witness” for x∈L

Completeness: If prover & verifier are honest, for all x∈L, and prover given a valid

witness w, verifier will always accept
Soundness: If x∉L, no matter what a cheating prover does, an honest verifier will

reject (except with negligible probability)
Proof-of-Knowledge: A stronger soundness notion

Zero-Knowledge: A (corrupt) verifier’s view can be simulated (honest prover, x∈L)

Soundness can be required to hold even against computationally unbounded provers
ZK Argument system: Like a ZK proof system, but soundness only against PPT
adversaries

ZK Property

proto proto

Env
REAL

i’face

Env

IDEAL

FR

Classical definition uses simulation
only for corrupt receiver;

and uses only standalone security:
Environment gets only a transcript at
the end

x,w x

Secure (and
correct) if:

∀ PPT

∃ PPT s.t.

∀ PPT

output of
in REAL and
IDEAL are
almost identical

x

Statistical
ZK: Allow
unbounded
environment

—

∀

∃

Two-Sided Simulation

protoproto

Env
REAL

i’face

Env

IDEAL

FR

x,w x

• Require simulation also when prover is corrupt

• Then simulator is a witness extractor

• Adding this (in standalone setting) makes it an Argument of Knowledge

x

Secure (and
correct) if:

∀ PPT

∃ PPT s.t.

∀ PPT

output of
in REAL and
IDEAL are
almost identical

Proof of Knowledge:
unbounded prover &

simulator, but
require sim to run
in comparable time

—
—

Some ZK Proof Techniques
Classic protocols for NP complete problems

e.g., graph 3 colorability (with standalone-secure commitment,
instantiated using, say, one-way permutations)

Any NP language L has a ZK proof system via reduction to an NP
complete problem

More generally, by committing to a “probabilistically checkable proof”

Can improve the communication efficiency

More efficient protocols for specific NP languages (avoiding the overhead
of reduction to NP complete languages)

e.g., Proof of equality of discrete logs (coming up)

Using MPC as a robust encoding

“MPC-in-the-head” (later)

Non-interactive variants (later)

Often in the random-oracle model

Discrete Logarithm

In a cyclic group, all elements can be written as g0, g1, …, gn-1

Given D∈G and a generator g, ∃ unique d ∈ [0,n-1] s.t. D = gd

Discrete logarithm of D w.r.t. g

In many groups, finding the discrete logarithm is computationally
hard

Many commitment schemes, encryption schemes, collision-resistant
hash functions etc. based on the hardness of discrete logarithm
and related problems

Honest-Verifier ZK Proofs
A ZK Proof of knowledge of discrete log of R=gr

P→V: U := gu

V→P: v

P→V: w := rv + u (modulo order of the group)
V checks: gw = RvU

Proof of Knowledge:

Firstly, gw = RvU ⇒ w = rv+u, where U = gu

If after sending U, P could respond to two different values
of v: w1 = rv1 + u and w2 = rv2 + u, then can solve for r

HVZK: simulation picks w, v first and sets U = gw/Rv

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

Special soundness: given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both
accepted by verifier, can derive a witness

e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)

Proof of knowledge (in stand-alone setting): for each U s.t.
prover has significant probability of being able to convince, a
simulator can extract r from the prover with overwhelming
probability (using “rewinding”)

Can amplify soundness using parallel repetition: still 3 rounds

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,R),(C,D)),
i.e., R = gr and D = Cr [Chaum-Pederson]

P→V: (U,T) := (gu,Cu)

V→P: v

P→V: w := rv+u
V checks: gw = RvU and Cw = DvT

Proof of Knowledge:
gw=RvU, Cw=DvT ⇒ w = rv+u = r’v+u’

where U=gu, T=gu’ and R=gr, D=Cr’

If after sending (U,T) P could respond to two different values
of v: rv1 + u = r’v1 + u’ and rv2 + u = r’v2 + u’, then r=r’

HVZK: simulation picks w, v first and sets U=gw/Rv, T=Cw/Dv

