
Advanced Tools from
 Modern Cryptography

Lecture 10
MPC: GMW Paradigm. Composition.

MPC: Story So Far

Security against passive corruption

“Basic GMW” using OT, Yao’s Garbled Circuits using OT,
“Passive-BGW” with honest majority

Security against active corruption (no honest majority)

ZK proofs

Today

GMW paradigm for upgrading from passive security to active
security

Composition

GMW Paradigm
Run a passive-secure protocol Π, but let each party “verify” that
the others are following the protocol correctly

Correctly: pick arbitrary inputs and arbitrary randomness first,
but then follow the specified program

Need to prove that each message was correctly computed, right
when it is sent

If proof required only at the end, too late!

Proving ∃ input, rand, s.t. next-messageΠ(input,rand,messages) equals

the message being sent

Should use the same input and randomness through out!
ZK proofs not enough

To prove ∃ input, rand, s.t. next-messageΠ(input,rand,messages)

equals the message being sent

Commit-and-Prove functionality: FCaP

Alice sends v to FCaP, which sends “committed” to Bob

Subsequently, for i=1,2,… Alice sends a function fi
(represented as a circuit) to FCaP, which sends (fi,fi(v)) to Bob

More generally, Alice sends (fi,wi) and FCaP sends (fi,fi(v,wi))
to Bob (i.e., without revealing wi)

Note: same v used in all rounds

Could “securely implement” FCaP using a “plain” commitment of v
(i.e., not using Fcom), and proving statements about it using FZK

Commit & Prove

Exercise

GMW Paradigm
Run a passive-secure protocol Π, but let each party “verify” that
the others are following the protocol correctly

Correctly: pick arbitrary inputs and arbitrary randomness first,
but then follow the specified program

Each party proves using FCaP that each message was correctly
computed, for the same committed inputs and randomness

fi defined so that fi(v) = 1 iff Π produces message mi on input/
randomness v for the proving party, given the transcript so far
(Π, mi and the transcript are hard-coded into fi)

Since verifiers need to refer to the messages received by
the prover, all communication in Π assumed to be over public
channels (say, using public-key cryptography)

Composition
We built an active-secure protocol using access to ideal FCaP
functionality

Is it OK to “replace” it by a secure protocol for FCaP?

More generally, can we replace an ideal functionality running in
an arbitrary environment with a secure protocol?

Depends on the exact definition of security!

Looking ahead: OK for both UC security and passive security

Not OK for standalone security

OK if only one instance of the ideal functionality is active
at any point (sequential composition)

Not directly an option for functionalities like CaP, but
possible if implemented using ZK functionality instances,
which are invoked sequentially

An example
An auction, with Alice and Bob bidding:

A bid is an integer in the range [0,100]

Alice can bid only even integers and Bob odd integers

Person with the higher bid wins

Goal: find out the winning bid (winner & amount) without
revealing anything more about the losing bid (beyond what is
revealed by the winning bid)

Fmax : Output the higher bid to both parties (Domains are
disjoint)

An example
Secure protocol:

Count down from 100

At each even round Alice announces whether her bid equals
the current count; at each odd round Bob does the same

Stop if a party says yes

Dutch flower auction

Perfect Standalone Security

But doesn’t compose!

Attack on
Dutch Flower Auction

Alice and Bob are taking part in two auctions

Alice’s goal: ensure that Bob wins at least one auction with some
bid z, and the winning bid in the other auction ∈ {z,z-1}

Easy in the protocol: run the two protocols lockstep. Wait till Bob
says yes in one. Done if Bob says yes in the other simultaneously.
Else Alice will say yes in the next round.

Why is this an attack?

Impossible for Alice to ensure this in IDEAL!

Attack on
Dutch Flower Auction

Alice’s goal: ensure that Bob wins at least one auction with some
bid z, and the winning bid in the other auction ∈ {z,z-1}

Impossible to ensure this in IDEAL!

Alice can get a result in one session, before running the other.
But what should she submit as her input x in the first one?

Trouble if x≠0, because she could win (i.e., z-1=x) and Bob’s
input in the other session may be ≠ x+1

Trouble if x=0, because Bob could win with input 1 (i.e., z=1)
and in the other session his input > 1

Standalone security definition does not ensure security when
composed

Different modes of composition

Sequential composition: protocols executed one after the
other. Adversary communicates with the environment between
executions.

Concurrent composition: multiple sessions (typically of the
same protocol) are active at the same time, and the
adversary can coordinate its actions across the sessions

Composition Issues

REAL
IDEAL

Concurrent Executions

EnvEnv

F

F

F

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

Standalone security definition does not ensure security when
composed

Different modes of composition

Sequential composition: protocols executed one after the
other. Adversary communicates with the environment between
executions.

Concurrent composition: multiple sessions (typically of the
same protocol) are active at the same time, and the
adversary can coordinate its actions across the sessions

Also, subroutine calls

Composition Issues

REAL
IDEAL

A “REAL” protocol in which parties access (another) IDEAL protocol

Subroutines

F

EnvEnv

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

F

Standalone security definition doesn’t ensure security when
composed

Different modes of composition

Sequential composition: protocols executed one after the
other. Adversary communicates with the environment between
executions. (OK by standalone security definition.)

Concurrent composition: multiple sessions (typically of the
same protocol) are active at the same time, and the
adversary can coordinate its actions across the sessions

Also, subroutine calls

Universal composition: Executed in an arbitrary environment
which may include other protocol sessions (possibly calling
this session as a subroutine). Live communication between
environment and adversary.

Composition Issues

World 1
Env

F

F

Universal Composition
Replace protocol with which is as secure, etc.

F

World 2
Env

F

F

EnvEnv

F

F

Universal Composition

World 3World 1

Replace protocol with which is as secure, etc.
F

EnvEnv

F

F

Universal Composition

Hope: resulting
system is as secure
as the one we
started with World 4World 1

Replace protocol with which is as secure, etc.
F

Universal Composition

Start from world A (think “IDEAL”)

Repeat (for any poly number of times):

For some 2 “protocols” (that possibly make use of ideal
functionalities) I and R such that R is as secure as I,
substitute an I-session by an R-session

Say we obtain world B (think “REAL”)

UC Theorem: Then world B is as secure as world A

Gives a modular implementation of the IDEAL world

