Advanced Tools from
Modern Cryptography

Lecture 12
MPC: UC-secure OT



UC-Secure OT

@ UC-secure OT is impossible (even against PPT adversaries) in the
“plain model” (i.e., without the help of another functionality)

@ But possible from simple setups
@ e.g., noisy channel (without computational assumptions)
@ e.g., common random coins (needs computational assumptions)

@ Today: from Common random string

@ Like common random coins, but reusable across multiple
sessions



An OT Protocol

(passive corruption)
@ Using (a special) encryption

@ PKE in which one can sample
a public-key without knowing

secret-key

(SKb, pr) «— KegGen
Sample PKqp

@ cqp inscrutable to a

passive corrupt receivey

® Sender learns nothine -~
co = Enc(xo PKq]
about b
..

e 1D

PKo, PK4
<€

xp=Declcp:SK
C0,C1 b (cp; SKy

Xb




Towards Active Security

@ Should not let the receiver pick PKo and PK; independently!
@ (PKo,PK;) tied together, in which at most one can be decrypted
o (PKo,PKl,SK) ¥z Gen(b) s.t. CheCk(PKo,PKl) = True

@ SK decrypts Enc(m;PKy), but not Enc(m;PK.p).
(PKo,PK1) hides b.

@ But a simulator should be able to extract b from (PKo,PK:) (if
Receiver corrupt) and m from Enc(m;PK;.,) (if Sender corrupt)

@ Scheme will use a common random string Q (to be
generated by a trusted party)

@ During simulation Simulator can generate (Q,T) where T is a
Trapdoor that can be used for extraction



Towards Active Security

@ Need: Gen(Q,b) and check(PKo,PK;,Q) such that
@ If (PKo,PK;,SK)—Gen(Q,b): SK decrypts Enc(m;PK,), (PKo,PK1) hides b.

@ If check(PKo,PK1,Q) = True: Enc(m;PK.) hides m for some c (even if
(PKo,PK1) maliciously generated). Simulator should have trapdoors.

@ Suppose two different types of setups possible such that:
Type 1 setup: Honestly generated (PKo,PK) statistically hides b.
Trapdoor decrypts both Enc(m;PKo) and Enc(m;PK).
Type 2 setup: Honest Enc(m;PK.) statistically hides m for some c.
Trapdoor extracts such a ¢ from any (PKo,PK}). /\
Type 1 setup = Type 2 setup (computationally) PK. said to }

be “lossy”

@ (PKo,PK;) computationally hides b in Type 2 setup too.
Enc(m;PK.) computationally hides m for some c in Type 1 setup too.

@ Simulation when Sender corrupt: Use Type 1 setup
@ Simulation when Receiver corrupt: Use Type 2 setup



Dual-Mode Encryption (DME)

@ Algorithms: Setuppec, Setupext, Gen, Check, Enc, Dec
@ Q from Setuppec and Setupex: indistinguishable

@ If (PKo,PK1,SK) < Gen(Q,b), then Check(PKo,PK:,Q)=True, and
Dec(Enc(x,PKp), SK) = x
@ Two more algorithms required to exist by security property:
FindLossy and TrapKeyGen

@ Given trapdoor from Setupext, and a pair PKo, PK; which passes
the Check, FindLossy can find a lossy PK out of the two

@ Given trapdoor from Setuppec, TrapKeyGen can correctly generate
(PKo, PK1), along with decryption keys SKo, SK;



OT from DME

M Protocol could use either

Setuppec or Setupext

(PKo,PK4,SK) «
Gen(Q,b)




OT from DME

@ Simulation for corrupt sender: _—

0. (Q,T) < Setuppec, send Q.
1. (PKo,PK{,SKo,SK¢) ¢~ TrapKeyGen(T), and send (PKo,PKy)

2. On getting (co,c1), extract (xo,x1) using (SKo,SK4) and send to For

® For corrupt receiver: Y 4
0. (Q,T) ¢ Setupe., send Q.

1. On getting (PKo,PK¢), send b:=1-FindLossy(PKo,PK4,T) to For, get xy
2. Send c¢p = Enc(xp, PKp) and c1.p = Enc(0, PK/ )

f Check(PKo,PK{,Q):
co = Enc(xo.PKo)
= Enc(x PKq

o '¢ —@
——




Dual-Mode Encryption (DME)

@ High-level idea for constructing a DME
@ PKE s.t. a (hidden) subset of the PK-space is “lossy”
@ Q = PK. Require that PKo-PK; = PK
@ Receiver can pick only one PKp. Other gets determined by Q
@ But maybe both can still be non-lossy!
@ Fix: Non-lossy subset is a sub-group, and Q = PK, a lossy key
@ PKo-PK; = PK = not both in the non-lossy subgroup!

@ Coming up: A primitive called SPH which allows a DME construction
as above

@ And a construction of SPH from “Decisional Diffie-Hellman”
assumption



Smooth Pro,;echve Hash (SPH)
Encode > l-:::lh

@ . Project
IFpeH lIFpeéH U2 H % HS\Mash

e H
B =p* B random H value

@ Public parameters 6 used by all algorithms. Trapdoor T
@ Encode: M — M* is a group homomorphism
@ H C M group s.t. given only 6, distributions {u*}u. w = {u*}u. mw

@ But using T, can perfectly distinguish the two distributions
@ So,heHS u* € H, where H* = { u* | p € H } a group



. DME from SPH
\n Encode >m/ v
n*g

-

If ueH lIFpeH

S

Project

B = B* B random

@ SPH gives a PKE scheme, with Hash as Enc, Hash* as Dec

@ Setup: Sample SPH params (0,t). Let <M. Let Q=(u*,0), T=(u,T)
@ Setuppec: M € H. Setupext: U ¢ H.

@ If u* ¢ H* given (Mo M1™) s.t. Mo™ 1™ = u% at least one of po,u; ¢
H. Can find using T. (FindLossy) This is Check(PKo,PK) ]

@ If u* € H*, using Y, can find (Mo,M1) s-t Mo™ 1™ = u* and both po, M1
€ H (TrapKeyGen)




Groups

@ A set G (for us finite, unless o’rher\P se specified) and a “group
operation” * that is associative, has an identity, is invertible, and
(for us) commutative

@ Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),

Gn = (Cartesian product of a group G, coordinate-wise operation)
@ Order of a group G: |G| = number of elements in G
@ For any acG, alsl = a*a*..*a (|G| times) = identity

@ Finite Cyclic group (in multiplicative notation): there
is one element g such that G = {g°, g!, g?, ... gi6l-1}

@ Prototype: Z\ (additive group), with g=1.

Corresponds to arithmetic in the exponent.



Decisional Diffie-Hellman
(DDH) Assumption

@ Assumption about a distribution of finite cyclic groups and
generators

o {(GI g: gxl gyl gxy)}(G,g)<—Gen; x,y<—[IGI] 2 {(GI g, gx: gyl gr)}(G,g)<—Gen; x,y,r<—[IGI]
@ Note: Requires that it is hard to find x from gx

@ Typically, G required to be a prime-order group. So arithmetic in
the exponent is in a field.

@ A formulation equivalent to DDH in prime-order groups:

D {(GI 9: 9“: gb: gau: gbu)}(G,g),a,b,u i {(Gl 9: gal gb: gaul gbv)}(G,g),G,b,u,V

@ If can distinguish the above, then can break DDH:
maP (GI g, gx, gyl h) 2 (GI g, gal gx: gy°al h)



SPH From DDH Assumption

Encode >
o’

@ . Project
6

If uegH U2 H % ook

B random

IFpeH
B=p

@ SPH from DDH assumption on a prime order group G

@ {(G, g9, g9, g°, g, g*V}Gg.abu = UG, g, g% gb, g% g"“)}G.g).abuv

@ 6 =(G6,g49%g°), T = (a,b)
n = (s,t) and n* = gas+bt, For random s,t, and uzy,

rt * _ . b, ; > and non-zero a,b,
M = (uyv) and p* = (goy, gov). g € H iff u=w. e toapiutby et

Hash(p*,n) = gaus gbvt and Hash*(p,n*) = glas+bt)u |given only (as+btu,v,a,b)
\ ,




