
Advanced Tools from
 Modern Cryptography

Lecture 13
MPC: Honest-Majority + Active Corruption

UC-Secure
 Information-Theoretic MPC

MPC protocols for general functions

With no honest-majority (e.g., GMW paradigm)

Information-theoretic security possible, given OT

With Honest Majority:

UC-security possible (with selective abort) if < n/2 parties
corrupt

Can even get guaranteed output delivery and perfect security
if < n/3 corrupt: BGW Protocol (Today)

Verifiable Protocol
Execution

We already saw passive secure BGW protocol

So need to only implement a functionality FVPE which carries out
the protocol on behalf of all the parties

Progress? Seems like we still need MPC for general functions!

But easier: Every variable/computation in FVPE is “owned”
by some party

VPE Functionality
FVPE maintains a state for each party (image), and carries out
“public” instructions (sent by a majority of parties) on these
images

FVPE supports:

Uploading a variable to one’s own image. The value being
uploaded is private. (The operation itself is public.)

An addition or multiplication within an image

Transferring a variable from one image to another

Can at any point read a variable in one’s own image

Plan for implementing FVPE: Every variable will be maintained as
a commitment by its owner to the others

Commitment
Simply do (n,t+1) secret-sharing of the message among all the n
players (e.g., degree t Shamir secret-sharing)

To reveal, sender broadcasts all the shares and all the parties
must agree. If the broadcast shares are valid, accept
reconstruction. Else abort.

For n-t ≥ t+1 (i.e., t < n/2), honest parties’ shares already
define a unique secret. Corrupt parties cannot force
outputting a wrong value

Problem 1: A single corrupt party can cause abort

Problem 2: Does not ensure that there is a valid commitment! If
commitments are not just opened, but computed on, problematic.

Commitment with
Guaranteed Opening

When t < n/3, can prevent adversary from causing abort at any
point (except, a corrupt sender can make all honest parties abort)

Idea: Before accepting a commitment, do consistency checks to
ensure that honest players’ shares do define a valid polynomial.

Problem: Corrupt parties can claim inconsistency with honest
players’ shares (“dispute”)

Idea: Let sender resolve disputes between two parties by
publishing both their shares

Problem: Adversary sees more information by disputing.

Idea: Information published is already known to the adversary

Commitment with
Guaranteed Opening

Use a bivariate polynomial f(x,y), of degree t in each variable, with
f(0,0) being the message. Party Pj gets f(i,j) for all i.

i.e., Party Pj gets a degree t univariate polynomial fj(x) := f(x,j)

Will require f(i,j) = f(j,i)

Checking:

Pi and Pj check if f(i,j) = f(j,i)

Also, Pj checks what it got is indeed a degree t polynomial

Disputing: If either check fails, Pj broadcasts a complaint

Resolution: Sender broadcasts f(i,j) or degree-t fj respectively

Repeat until no more disputes

If sender caught cheating in its broadcast, all honest parties abort

f(x,y) = Σ cp,q xpyq, with cp,q = cq,p and c0,0=msg

Commitment with
Guaranteed Opening

Use a bivariate polynomial f(x,y), of degree t in each variable, with
f(0,0) being the message. Party Pj gets f(i,j) for all i.

i.e., Party Pj gets a degree t univariate polynomial fj(x) := f(x,j)

Will require f(i,j) = f(j,i)

Checking:

Pi and Pj check if f(i,j) = f(j,i)

Also, Pj checks what it got is indeed a degree t polynomial

Disputing: If either check fails, Pj broadcasts a complaint

Resolution: Sender broadcasts f(i,j) or degree-t fj respectively

Repeat until no more disputes

If sender caught cheating in its broadcast, all honest parties abort

f(x,y) = Σ cp,q xpyq, with cp,q = cq,p and c0,0=msg

Commitment with
Guaranteed Opening

If sender honest

Before any disputes, corrupt players (<t) learn nothing about
the message

There is a bijection between sharings of m and sharings of
0, which preserves the view of the adversary

Consider degree t polynomial h(x) s.t. h(0)=1, and h(j)=0
for all corrupt Pj

Bijection maps f(x,y) to f(x,y) - m ⋅ h(x)h(y)

Messages revealed during dispute resolution are all messages
known to the corrupt parties

Opening: Each party Pj sends f(0,j) to the receiver. Receiver

reconstructs the degree t polynomial f(0,y), with error correction
from up to t errors [algorithm omitted]

Commitment with
Guaranteed Opening

If sender corrupt:

Either sender aborts before all disputes settled,

Or, no dispute remaining among the honest players. Then
{ f(i,j) | i,j honest } is part of a valid sharing of f(0,0), and
determines f(0,0) uniquely.

Opening: Each party Pj sends f(0,j) to the receiver. Receiver

reconstructs the degree t polynomial f(0,y), with error correction
from up to t errors [algorithm omitted]

Honest Pj verified that row j is a degree t polynomial f(x,j)

Pj receives column j from other parties, and it equals row j

Equals a linear combination of honest rows. Hence degree t.

Why t < n/3?
t<n/3 needed for broadcast with guaranteed output delivery (later)

Even if broadcast given as an ideal functionality, the BGW protocol
needs t < n/3

To uniquely decode a codeword from ≤ t errors, need distance
between valid codewords to be > 2t (otherwise can have an
invalid codeword which is t away from two valid codewords). But
for degree t polynomials, minimum distance = n-t [Why?].
So, n-t > 2t. i.e., n > 3t

Note: Given broadcast, there are protocols that can tolerate t < n/2
corruption with statistical security (BGW has perfect security)

Recall VPE Functionality
FVPE maintains a state for each party (image), and carries out
“public” instructions (sent by a majority of parties) on these
images

FVPE supports:

Uploading a variable to one’s own image. The value being
uploaded is private. (The operation itself is public.)

An addition or multiplication within an image

Transferring a variable from one image to another

Can at any point read a variable in one’s own image

Plan for implementing FVPE: Every variable will be maintained as
a commitment by its owner to the others

A VPE Protocol
Every variable maintained as a commitment by its owner to the
others, where commitment is using the symmetric bivariate
polynomial secret-sharing. Uploading: Commitment.

Linear operations: If f, g shares of a, b, then αf+βg is a share of
αa+βb (with the same dealer)

Multiplication: Owner will send a fresh commitment of c and give
a proof of c=a⋅b, that can be verified collectively

Proof of c=a⋅b: Degree t polynomials p, q with constant terms

a, b, and a degree 2t polynomial r with constant term c, s.t.
p⋅q = r. a,b,c already committed. Other coefficients are also

committed. Evaluations p(i), q(i), r(i) are computed (using linear
operations) and revealed to party Pi who checks if p(i)⋅q(i) =

r(i). If all n-t > 2t honest parties agree, then indeed p⋅q=r.

Every variable maintained as a commitment by its owner to the
others, where commitment is using the symmetric bivariate
polynomial secret-sharing. Uploading: Commitment.

Linear operations: If f, g shares of a, b, then αf+βg is a share of
αa+βb (with the same dealer)

Multiplication: Owner will send a fresh commitment of c and give
a proof of c=a⋅b, that can be verified collectively

Transfer: To transfer a committed variable a from Pi to Pj, Pi opens
it to Pj and Pj recommits it. Then Pi, Pj cooperate to prove equality

To prove values a, b committed by Pi, Pj are equal, they commit
to coefficients of (identical) degree t polynomials p, q with
constant terms a, b respectively, and open p(k),q(k) to Pk who
checks p(k)=q(k)

A VPE Protocol

Broadcast
Our protocol relied on broadcast to ensure all honest parties
have the same view of disputes, resolution etc.

Concern addressed by broadcast: a corrupt sender can send
different values to different honest parties

Broadcast with selective abort can be implemented easily, even
without honest majority

Sender sends message to everyone. Every party cross-checks
with everyone else, and aborts if there is any inconsistency.

If corruption threshold t < n/3, then it turns out that broadcast
with guaranteed output delivery can be implemented [omitted]

If broadcast given as a setup, can do MPC with guaranteed
output delivery for up to t < n/2

