Advanced Tools from
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Lecture 15
MPC: Beyond General MPC



General MPC

@ Information-theoretic security

@ Passive with corruption threshold t < n/2 {Passive BGW/CCD]

@ Passive with OT setup {Passive GMW]
@ Guaranteed Output UC with t < n/3 <[ BGW
@ Guaranteed Output UC with t < n/2 and Broadcasf{“Rabin-BenOr"]

@ Selective Abort UC, with OTq “Kilian” (Also: GMW paradigm implemented
using OT-based proof)

@ Computational security

@ Passive { Composing Yao or Passive GMW with a passive-secure OT protocol ]

@ Standalone <[ GMW: using ZK proofs

@ Selective Abort UC, with CRS
Composing Kilian with a CRS-based UC-secure OT protocol ]




Feasibility of General MPC

@ Given honest majority, or given OT as a setup:

@ General MPC is possible with the highest security guarantee
(information-theoretic, UC security)

@ Variations: t<n/3 vs. t<n/2+broadcast. Perfect vs. Statistical.
Guaranteed output delivery vs. unfair.

@ Otherwise:
PPT

Info. Th.
@ When general MPC is not possible, which functions admit MPC?

@ A functionality that admits MPC protocols without a setup in a
security model is called ftrivial in that model




Trivial Functionalities:
PPT Setting

General MPC under the assumption
that there is a passive-secure

protocol for OT
(a.k.a. sh-0T)

For n=2, we have an explicit
characterisation of trivial functions
(splittable functions).
Extends to n=3 as well.

Open for n > 3

GMW: using ZK proofs
(sh-OT = OWF = ZK)




Trivial Functionalities:
Information-Theoretic

@ For n-party information-theoretic passive security, for each
corruption threshold t: the Privacy Hierarchy

@ All n-party functions appear till level [(n-1)/2] in this
hierarchy (e.g., by Passive-BGW). Some reach level n: e.g., XOR
or more generally, group addition. Level n-1 is same as level n.

@ At all intermediate levels t, examples known to exist which are
not in level t+1

@ Open problem: For all n, characterise the functions at each level
t (or even for t=n)

@ For n=2 we do have a characterisation



Trivial 2-Party Functionalities:
Information-Theoretic

For deterministic SFE:
Trivial < Decomposable




Decomposable Function

(For simplicity will restrict to symmetric SFE)

Examples of Decomposable Functions
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Decomposable Function
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Trivial 2-Party Functionalities:
Information-Theoretic

Passive Stand-alone
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Decomposable Function

Examples of Decomposable Functions
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Trivial 2-Party Functionalities:
Information-Theoretic

Trivial < Splittable

Passive Stand-alone
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Completeness

@ We saw OT can be used to (passive- or UC-) securely realise any
functionality

@ i.e., any other functionality can be reduced to OT

@ The Cryptographic Complexity question:
@ Can F be reduced to G (for different reductions)?
@ F reduces to G: will write FC G

@ G complete if everything reduces to G

@ F trivial if F reduces to everything (in particular, to NULL)




PPT Setting: Completeness

@ PPT Passive security and PPT Standalone security

@ Under sh-OT assumption, all functions are trivial —
and hence all are complete too!

@ PPT UC security, n=2:
@ Recall, only a few (splittable) functionalities are trivial

@ Under sh-OT, turns out that every non-trivial
functionality is complete



IT Setting: Completeness

@ Information-Theoretic Passive security

@ (Randomized) SFE: Complete < Not Simple
@ What is Simple?



Simple vs. Non-;‘_Simple ,
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IT Setting: Completeness

@ Information-Theoretic Passive security

@ (Randomized) SFE: Complete < Not Simple
@ What is Simple?

@ In the characteristic bipartite graph, each
connected component is a biclique

@ If randomized, within each connected
component w(u,v) = wa(u) X wa(v)



Simple vs. Non-Simple
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IT Setting: Completeness

@ Information-Theoretic Passive security
@ (Randomized) SFE: Complete < Not Simple

@ Information-Theoretic Standalone & UC security
@ (Randomized) SFE: Complete < Core is not Simple
@ What is the core of an SFE?

@ SFE obtained by removing “redundancies” in
the input and output space



A Map of 2-Party Functions
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