Advanced Tools from Modern Cryptography

Lecture 1
Basics: Indistinguishability

Manoj Prabhakaran

IIT Bombay

Outline

- Independence
- Statistical Indistinguishability
- Computational Indistinguishability

A Game

- A "dealer" and two "players" Alice and Bob (computationally unbounded)
- Dealer has a message, say two bits m₁m₂
- She wants to "share" it among the two players so that neither player by herself/himself learns anything about the message, but together they can find it
- Bad idea: Give m₁ to Alice and m₂ to Bob
- Other ideas?

Sharing a bit

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob _____
 - Together they can recover m as a⊕b

Each party by itself learns nothing about m: for each possible value of m, its share has the same distribution

m = 0
$$\rightarrow$$
 (a,b) = (0,0) or (1,1) w.p. 1/2 each
m = 1 \rightarrow (a,b) = (1,0) or (0,1) w.p. 1/2 each

@ i.e., Each party's "view" is independent of the message

Secrecy

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability ½, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is uniformly random!)
- But they could have done this without obtaining the shares
 - The shares didn't leak any <u>additional</u> information to either party
- Typical crypto goal: preserving secrecy
 - What Alice (or Bob) knows about the message after seeing her share is the same as what she knew a priori

Secrecy

- What Alice knows about the message a priori: probability distribution over the message
 - For each message m, Pr[msg=m]
- What she knows after seeing her share (a.k.a. her view)
 - Say view is v. Then new distribution: Pr[msg=m | view=v]
- ⑤ Secrecy: ∀ v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]
 - i.e., view is independent of message
 - Equivalently, ∀ v, ∀ m, Pr[view=v | msg=m] = Pr[view=v]
 - i.e., for all possible values of the message, the view is distributed the same way

Doesn't involve message distribution at all.

i.e., \forall m₁,m₂ { Share_A(m₁;r) }_r = { Share_A(m₂;r) }_r

Secrecy

- Equivalent formulations:
 - For all possible values of the message, the view is distributed the same way

Doesn't involve message distribution at all.

- View and message are independent of each other

- View gives no information about the message <</p>

Require a message distribution (with full support)

Important: can't say Pr[msg=m1 | view=v] = Pr[msg=m2 | view=v] (unless the prior is uniform)

Exercise

- Consider the following secret-sharing scheme
 - Message space = { Jan, Feb, Mar }

 - Feb → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each
 - Mar → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or (11,00) w/ prob 1/8 each
 - Reconstruction possible as the 3 sets of shares are disjoint
 - The Let $β_1β_2$ = share_{Alice} ⊕ share_{Bob}. Map $β_1β_2$ as follows: $00 \rightarrow Jan$, $01 \rightarrow Feb$, 10 or $11 \rightarrow Mar$
- Is it secure?

Relaxing Secrecy Requirement

- When view is not exactly independent of the message
 - Next best: view close to a distribution that is independent of the message
 - Two notions of closeness: Statistical and Computational

Statistical Difference

- Given two distributions A and B over the same sample space, how well can a test T distinguish between them?
 - T given a single sample drawn from A or B
 - How differently does it behave in the two cases?

Indistinguishability

- Two distributions are statistically indistinguishable from each other if the statistical difference between them is "negligible"
- Security guarantees will be given <u>asymptotically</u> as a function of the <u>security parameter</u>
 - A knob that can be used to set the security level
- @ Given $\{A_k\}$, $\{B_k\}$, $\Delta(A_k,B_k)$ is a function of the security parameter k
- Negligible: reduces "very quickly" as the knob is turned up
 - The vary quickly and quicker than 1/poly for any polynomial poly
 - So that if negligible for one sample, remains negligible for polynomially many samples
 - v(k) is said to be negligible if \forall d ≥ 0, \exists N s.t. \forall k>N, v(k) < 1/k^d

Indistinguishability

- © Distribution ensembles $\{A_k\}$, $\{B_k\}$ are statistically indistinguishable if \exists negligible v s.t. $\forall k$ $\Delta(A_k,B_k) \leq v(k)$
 - where $\Delta(A_k,B_k) := \max_T | Pr_{x \leftarrow A_k}[T(x)=0] Pr_{x \leftarrow B_k}[T(x)=0] |$
 - i.e. if \exists negligible v s.t. \forall tests T, \forall k $Pr_{x \leftarrow A_k}[T_k(x)=0] Pr_{x \leftarrow B_k}[T_k(x)=0] | \leq v(k)$
- Distribution ensembles $\{A_k\}$, $\{B_k\}$ computationally indistinguishable if \exists negligible v s.t. \forall "efficient" tests T, \forall sufficiently large k $|Pr_{x\leftarrow A_k}[T_k(x)=0] Pr_{x\leftarrow B_k}[T_k(x)=0]| \leq v(k)$

Asking for ∀k makes it as strong as statistical indistinguishability

Indistinguishability

 $A_k \approx B_k$

- Distribution ensembles $\{A_k\}$, $\{B_k\}$ computationally indistinguishable if \exists negligible v s.t. \forall "efficient" tests T, \forall sufficiently large K $[Pr_{x \leftarrow A_k}[T_k(x)=0] Pr_{x \leftarrow B_k}[T_k(x)=0] | \leq v(k)$
- Efficient: Probabilistic Polynomial Time (PPT)

Non-Uniform

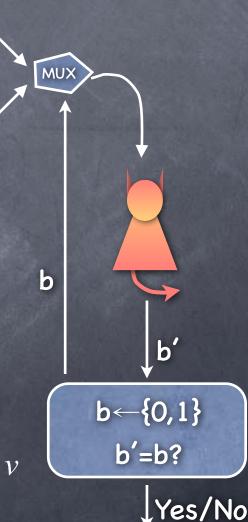
- PPT T: a family of randomised programs T_k (one for each value of the security parameter k), s.t. there is a polynomial p with each T_k running for at most p(k) time
- (Could restrict to uniform PPT, i.e., a single program which takes k as an additional input. By default, we'll allow non-uniform.)

Security Games

- Indistinguishability can be defined using a guessing game
 - b chosen uniformly at random
 - Pr[b'=b] = ?
 - Pr[b'=b=0] + Pr[b'=b=1] $= \frac{1}{2} \cdot Pr[b'=0|b=0] + \frac{1}{2} \cdot Pr[b'=1|b=1]$ $= \frac{1}{2} (Pr[b'=0|b=0] + 1-Pr[b'=0|b=1])$ $= \frac{1}{2} + \frac{1}{2} (Pr[b'=0|b=0] - Pr[b'=0|b=1])$ = $\frac{1}{2} + \frac{1}{2} (Pr_{x \leftarrow A}[T(x)=0] - Pr_{x \leftarrow B}[T(x)=0])$

 - computationally • A,B statistically indistinguishable v

large enough in the above game, for every adversary, $\forall k$, Advantage(k) := $Pr[b'=b] - \frac{1}{2} \le v(k)$



A

B

Pseudorandomness Generator (PRG)

- Takes a short seed and (deterministically) outputs a long string
 - **3** G_k: $\{0,1\}^{k} \rightarrow \{0,1\}^{n(k)}$ where n(k) > k
- Security definition: Output distribution induced by random input seed should be "pseudorandom"
 - @ i.e., Computationally indistinguishable from uniformly random
 - $\{G_k(x)\}_{x \leftarrow \{0,1\}^k} \approx U_{n(k)}$
 - Note: $\{G_k(x)\}_{x \leftarrow \{0,1\}^k}$ cannot be statistically indistinguishable from $U_{n(k)}$ unless $n(k) \le k$ (Exercise)
 - i.e., no non-trivial PRG against unbounded adversaries