Advanced Tools from Modern Cryptography

Lecture 2

First Tool: Secret-Sharing

Secret-Sharing

- Dealer encodes a message into n shares for n parties
 - Privileged subsets of parties should be able to reconstruct the secret
 Access Structure: Set of all privileged sets
 - View of an unprivileged subset should be independent of the secret
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions
 - Secure multi-party computation
 - Attribute-Based Encryption
 - Leakage resilience ...

- ∅ (n,t)-secret-sharing
 - Divide a message m into n shares s₁,...,s_n, such that
 - any t shares are enough to reconstruct the secret
 - e upto t-1 shares should have no information about the secret
- @ Recall last time: (2,2) secret-sharing

e.g., (s₁,...,s_{t-1}) has the same distribution for every m in the message space

Construction: (n,n) secret-sharing

Additive Secret-Sharing

- Message-space = share-space = G, a finite group
 - \bullet e.g. $G = \mathbb{Z}_2$ (group of bits, with xor as the group operation)
 - \circ or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)
 - σ or, $G = \mathbb{Z}_p$ (group of integers mod p)
- Share(M):
 - Pick s₁,...,s_{n-1} uniformly at random from G
 - @ Let $s_n = -(s_1 + ... + s_{n-1}) + M$
- @ Reconstruct($s_1,...,s_n$): $M = s_1 + ... + s_n$
- Claim: This is an (n,n) secret-sharing scheme [Why?]

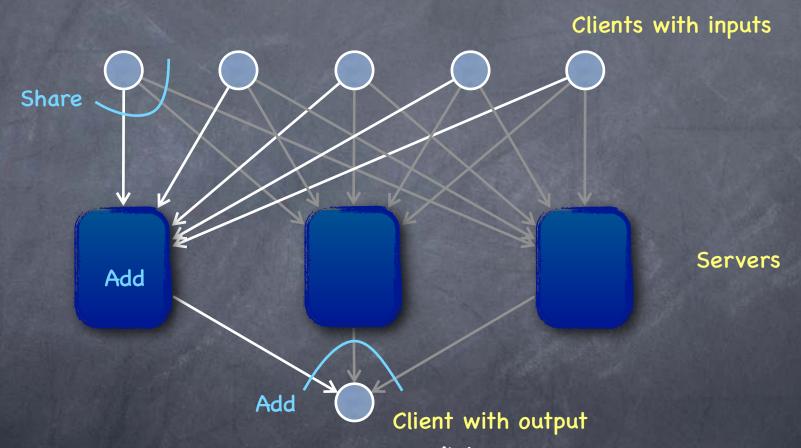
DEOOK

Additive Secret-Sharing: Proof

- Share(M):
 - @ Pick s₁,...,s_{n-1} uniformly at random from G
 - @ Let $s_n = M (s_1 + ... + s_{n-1})$
- @ Reconstruct($s_1,...,s_n$): $M = s_1 + ... + s_n$
- **Proof**: Let T ⊆ {1,...,n}, |T| = n-1. We shall show that $\{s_i\}_{i\in T}$ is distributed the same way (in fact, uniformly) irrespective of what M is.
 - For T = {1,...,n−1}, true by construction. How about other T?
 - For concreteness consider $T = \{2,...,n\}$. Fix any (n-1)-tuple of elements in G, $(g_1,...,g_{n-1}) \in G^{n-1}$. To prove $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})]$ is same for all M.
 - Fix any M.
 - $(s_2,...,s_n) = (g_1,...,g_{n-1}) \Leftrightarrow (s_2,...,s_{n-1}) = (g_1,...,g_{n-2}) \text{ and } s_1 = M-(g_1+...+g_{n-1}).$
 - So $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})] = Pr[(s_1,...,s_{n-1})=(a,g_1,...,g_{n-2})], a:=(M-(g_1+...+g_{n-1}))$
 - But $Pr[(s_1,...,s_{n-1})=(a,g_1,...,g_{n-2})] = 1/|G|^{n-1}$, since $(s_1,...,s_{n-1})$ uniform over G^{n-1}
 - Hence $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})] = 1/|G|^{n-1}$, irrespective of M.

An Application

Gives a "private summation" protocol (for commutative groups)



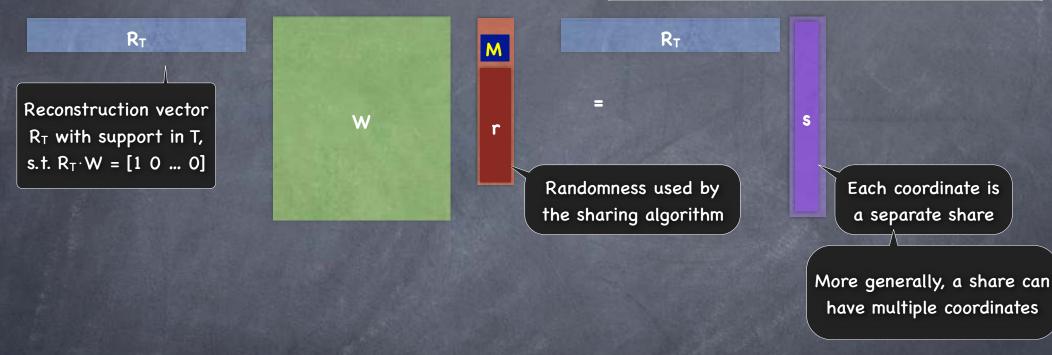
"Secure against passive corruption" (i.e., no colluding set of servers/clients learn more than what they must) if at least one server stays out of the collusion

Linear Secret-Sharing

Another look at additive secret-sharing

Multiplication by ±1 and 0 well-defined in a group.

But more generally, we shall consider a field.



- Linear Secret-Sharing over a field: message and shares are field elements
- \odot Reconstruction by a set T \subseteq [n]: solve the message from given shares

$$\bullet$$
 i.e., solve $W_T \begin{bmatrix} M \\ r \end{bmatrix} = s_T$ for M

Security of Linear Secret-Sharing

- Claim: Every such linear scheme is a secure secret-sharing scheme for some access structure
- \odot Suppose T \subseteq [n] s.t. M not uniquely reconstructible from \underline{s}_T
 - ø i.e., solution space (of \underline{z}) for $W_T \cdot \underline{z} = \underline{s}_T$ contains at least two points with distinct values α and β for M
 - Then, $\forall \chi \in F$, the solution space has a point with M= χ (e.g., linear combination of the above points with factors $(\chi \beta)/(\alpha \beta)$ and $(\alpha \chi)/(\alpha \beta)$)
 - Therefore, for any $y \in F$, can add equation M=y and get a solution space of dimension k equal to the nullity of the system
 - \odot i.e., with M=%, exactly $|F|^k$ choices of randomness \underline{r} that give \underline{s}_T
 - @ i.e., for all \underline{s}_T and λ , $Pr[view=\underline{s}_T \mid M=\lambda] = |F|^k/|F|^{t-1}$

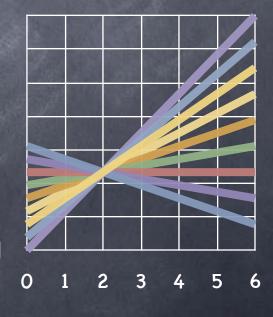
- Construction: (n,2) secret-sharing
- Message-space = share-space = F, a finite field (e.g. integers mod prime)

every value of d

- Share(M): pick random r. Let $s_i = r \cdot a_i + M$ (for i=1,...,n < |F|)
- Reconstruct(s_i , s_j): $r = (s_i-s_j)/(a_i-a_j)$; $M = s_i r \cdot a_i$
- irrespective of M [Why?] Since a_i^{-1} exists, exactly one solution for $r \cdot a_i + M = d$, for
- "Geometric" interpretation
 - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares $s_i = f(a_i)$.

 - But can reconstruct the line from two points!

a_i are n distinct, non-zero field elements



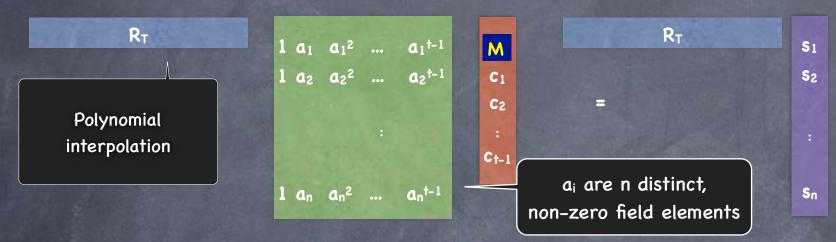
∅ (n,t) secret-sharing in a (large enough) field F

Shamir Secret-Sharing

- Generalizing the geometric/algebraic view: instead of lines, use polynomials
 - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are $s_i=f(a_i)$.
 - @ Random polynomial with f(0)=M: $c_0 + c_1X + c_2X^2 + ... + c_{t-1}X^{t-1}$ by picking $c_0=M$ and $c_1,...,c_{t-1}$ at random.
 - Reconstruct(s₁,...,s_t): Lagrange interpolation to find M=c₀
- Secrecy: Shamir's scheme is linear!

Linearity of Shamir Secret-Sharing

Shamir's scheme is a linear secret-sharing scheme



- - - For |T| < t, can add a row [1 0 ... 0] and (optionally) more rows of the form [1 a a²... a⁺] to get a Vandermonde matrix. So [1 0 ... 0] is independent of the rows of W_T
- Secrecy: guaranteed for any linear secret-sharing scheme

More General Access Structures

- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"

$$|\mathcal{B}| = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

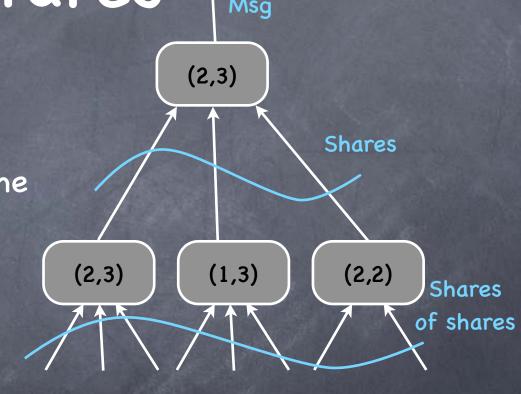
- $oldsymbol{\varnothing}$ How big is \mathcal{B} ? (Say when $\mathcal A$ is a threshold access structure)
- Total share complexity = $\Sigma_{S \in \mathcal{B}}$ |S| field elements. (Compare with Shamir's scheme: n field elements in all.)
- More efficient schemes known for large classes of access structures

More General Access Structures 1 Msg

A simple generalization of threshold access structures

A threshold tree to specify the access structure

Can realize by recursively threshold secret-sharing the shares



- Note: <u>linear</u> secret-sharing

Today

- Secret-sharing schemes
 - (n,t) Threshold secret-sharing
 - Additive sharing for (n,n)
 - Shamir secret-sharing for all (n,t)
 - Optimal (ideal) when message-space is a field with more than n elements
 - Linear secret-sharing