
Advanced Tools from
 Modern Cryptography

Lecture 5

Secure Multi-Party Computation:

Passive Corruption, Honest-Majority, All Functions

Share

Linearly
Combine

Reconstruct

Clients with inputs

Clients with outputs

Servers

MPC for Linear Functions:
Using Linear Secret-Sharing

f1(x1,…,x5) f2(x1,…,x5)

x3x1 x2 x4 x5

Re
cal

l

If using additive
secret-sharing,
secure against
corruption of

all-but-one server

MPC: Honest-Majority +
Passive-Corruption

Today: information-theoretically secure MPC for any function

The “BGW protocol” (passive-corruption version)

N servers such that adversary can corrupt only < N/2

Function should be given as an arithmetic circuit over a large
enough field (|F| > #parties)

Gate-by-gate evaluation, under Shamir secret-sharing of wires

Functions as Circuits

Directed acyclic graph

Nodes: multiplication and addition
gates, constant gates, inputs,
output(s)

Edges: wires carrying values from F

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

10

-1

Functions as Circuits

e.g., Boolean logic as a circuit over GF(2)

False = 0, True = 1, x∧y = xy, x⊕y = x+y

¬x = 1+x, x∨y = x + y + xy

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:

(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0))
= x1(1+y1) + (1+x1+y1)(1+y0)x0

Can directly convert a truth-table into a circuit, but circuit size
exponential in input size

Can convert any (“efficient”) program into a (“small”) circuit

Interesting problems already given as succinct programs/circuits

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0

Gate-by-Gate Evaluation
Wire values will be kept linearly secret-
shared among all parties

Each input value is secret-shared among
the servers by the input client “owning” the
input gate

Linear operations computed by each server
on its shares, locally (no communication)

Shares of x, y → Shares of ax+by

Multiplication will involve communication

Will need appropriate kind of secret-
sharing scheme, with threshold < N/2

Output gate evaluation: servers send their
shares to the output client owning the gate

10

-1

Question: How to go from shares(x), shares(y) to shares(x⋅y) securely?

Idea: Use multiplicative structure of Shamir secret-sharing

For polynomials, multiplication commutes with evaluation:
(f⋅g)(x) = f(x)⋅g(x)

In particular, to get a polynomial h with h(0)= f(0)⋅g(0),
simply define h = f⋅g. Shares h(x) can be computed as f(x)⋅g(x)

But note: h has a higher degree!

Problem 1: If original degree ≥ N/2, can’t reconstruct the
product even if all parties reveal their new shares

Solution: Use degree d < N/2 (limits to d < N/2 corruption)

Problem 2: Can’t continue protocol after one multiplication

MPC for General Functions:
Using Shamir Secret-Sharing

Problem: If x, y shared using a degree d polynomial, x⋅y is shared
using a degree 2d polynomial

Solution: Bring it back to the original secret-sharing scheme!

Recall share switching: can switch from degree-2d shares to
(fresh) degree-d shares

Note: All N servers together should be able to linearly reconstruct
the degree-2d sharing

Start with N ≥ 2d+1

Can tolerate only up to d (≤ (N-1)/2) corrupt servers (and any
number of corrupt clients)

Security? [Exercise: later, via “composition”]

MPC for General Functions:
Using Shamir Secret-Sharing

< N/2

“Fresh” randomness
[Exercise: Later]

Z

 w1

 c11

 c12 …

 :

 c1,u’

 w2

 c21

 c22

 :

 c2,u’

 wn

 cv1

 cv2

 :

 cv,u’

Degree Reduction

=
 …

:

σ1n

σ11

:

σvn

σv1

:

σ2n

σ21

Each row made available
with one server

R R
=

:

zn

z1

 m

r1

r2

:

ru’

w1 … wn R = m

High-degree shares,
each with one server

Low-degree sharing

High-degree reconstruction

Each column with one server

BGW Protocol for Passive
Corruption: Summary

Locally multiplying degree d shares gives a degree 2d share

 Then switch back to a fresh degree d share (involves communicating
deg. d shares of deg. 2d shares)

Function f given as an arithmetic circuit: i.e., a program with linear
steps and multiplications (over a finite field)

Degree d=⌊(n-1)/2⌋
Shamir Secret-Sharing

Linear steps

local

Reconstruct

Clients with inputs

Client with output

Servers
locally mult.
Mult steps

Need n > 2d parties.
Security against d
colluding parties Switch SwitchSwitch

Use share-switching
protocol for

“Degree Reduction”

MPC: Honest-Majority +
Passive-Corruption

Typically we consider N parties that can all communicate directly
with each other and may have inputs and outputs

Each party runs a server (and at most one input and one
output client)

Can compute any N-party function, tolerating corruption of
strictly less than N/2 parties

e.g., 1 party out of 3, or 2 parties out of 5

No security in a 2-party setting!

Q: For which functions can we obtain information-theoretic
security against N/2 (or more) corruption?

Not all functions!

Exactly known for N=2 (later)

General case is still an open problem!

Need honest majority for computing AND

Enough to show that 2 parties cannot compute AND securely

Because, if there were an N-party AND protocol tolerating
N/2 corrupt parties, we can convert it into a 2-party
protocol for AND as follows:

Alice runs P1,…,PN/2 “in her head”, with her input as P1’s
input and 1 as input for the others. Bob runs the
remaining parties similarly.

View of the parties in Alice's head don’t reveal anything
about Bob’s input, other than what the AND reveals

Information-Theoretic MPC
Without Honest-Majority?

Suppose there is a 2-party protocol for AND. Consider a
transcript m such that Pr[m|x=0,y=0] = p > 0.

By security against Alice, Pr[m|x=0,y=1] = p.
And by security against Bob, Pr[m|x=1,y=0] = p.

How about Pr[m|x=1,y=1]? Should be 0, for correctness

Suppose m=m1m2…mt, with Alice sending the first
message. Alice with x=1 will send m1 with positive
probability because Pr[m|x=1,y=0] > 0. Bob with y=1, and
given m1 will send m2 with positive probability, etc.
Hence Pr[m|x=1,y=1] > 0 !

Need honest majority for computing AND

Enough to show that 2 parties cannot compute AND securely

Information-Theoretic MPC
Without Honest-Majority?

Today

Any N-party function can be perfectly securely computed
against passive corruption of < N/2 parties

Linear functions can be perfectly securely computed against the
corruption of any number of parties

There are many functions (e.g., AND) which cannot be
information-theoretically securely computed if N/2 parties can
be corrupted

Next: How to go beyond honest-majority (hint: not information-
theoretically)

