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Secure Multi-Party Computation: 

Passive Corruption, Honest-Majority, All Functions
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MPC for Linear Functions: 
Using Linear Secret-Sharing
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MPC: Honest-Majority + 
Passive-Corruption

Today: information-theoretically secure MPC for any function


The “BGW protocol” (passive-corruption version)


N servers such that adversary can corrupt only < N/2


Function should be given as an arithmetic circuit over a large 
enough field (|F| > #parties)


Gate-by-gate evaluation, under Shamir secret-sharing of wires



Functions as Circuits

Directed acyclic graph


Nodes: multiplication and addition 
gates, constant gates, inputs, 
output(s)


Edges: wires carrying values from F 


Each wire comes out of a unique 
gate, but a wire might fan-out


Can evaluate wires according to a 
topologically sorted order of gates 
they come out of
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Functions as Circuits

e.g., Boolean logic as a circuit over GF(2)

False = 0, True = 1, x∧y = xy, x⊕y = x+y

¬x = 1+x, x∨y = x + y + xy

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:


(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0) ) 
= x1(1+y1) + (1+x1+y1)(1+y0)x0


Can directly convert a truth-table into a circuit, but circuit size 
exponential in input size


Can convert any (“efficient”) program into a (“small”) circuit


Interesting problems already given as succinct programs/circuits
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Gate-by-Gate Evaluation
Wire values will be kept linearly secret-
shared among all parties


Each input value is secret-shared among 
the servers by the input client “owning” the 
input gate


Linear operations computed by each server 
on its shares, locally (no communication)


Shares of x, y → Shares of ax+by


Multiplication will involve communication


Will need appropriate kind of secret-
sharing scheme, with threshold < N/2


Output gate evaluation: servers send their 
shares to the output client owning the gate
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Question: How to go from shares(x), shares(y) to shares(x⋅y) securely?


Idea: Use multiplicative structure of Shamir secret-sharing


For polynomials, multiplication commutes with evaluation: 
(f⋅g)(x) = f(x)⋅g(x)


In particular, to get a polynomial h with h(0)= f(0)⋅g(0),  
simply define h = f⋅g. Shares h(x) can be computed as f(x)⋅g(x)


But note: h has a higher degree!


Problem 1: If original degree ≥ N/2, can’t reconstruct the 
product even if all parties reveal their new shares


Solution: Use degree d < N/2 (limits to d < N/2 corruption)


Problem 2: Can’t continue protocol after one multiplication

MPC for General Functions: 
Using Shamir Secret-Sharing



Problem: If x, y shared using a degree d polynomial, x⋅y is shared 
using a degree 2d polynomial


Solution: Bring it back to the original secret-sharing scheme!


Recall share switching:  can switch from degree-2d shares to 
(fresh) degree-d shares


Note: All N servers together should be able to linearly reconstruct 
the degree-2d sharing


Start with N ≥ 2d+1


Can tolerate only up to d ( ≤ (N-1)/2) corrupt servers (and any 
number of corrupt clients)


Security? [Exercise: later, via “composition”]

MPC for General Functions: 
Using Shamir Secret-Sharing

< N/2



“Fresh” randomness 
[Exercise: Later]
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BGW Protocol for Passive 
Corruption: Summary

Locally multiplying degree d shares gives a degree 2d share

 Then switch back to a fresh degree d share (involves communicating 
deg. d shares of deg. 2d shares)

Function f given as an arithmetic circuit: i.e., a program with linear 
steps and multiplications (over a finite field)

Degree d=⌊(n-1)/2⌋  
Shamir Secret-Sharing

Linear steps 

local

Reconstruct

Clients with inputs

Client with output

Servers
locally mult.
Mult steps

Need n > 2d parties. 
Security against d 
colluding parties Switch SwitchSwitch

Use share-switching 
protocol for 

“Degree Reduction”



MPC: Honest-Majority + 
Passive-Corruption

Typically we consider N parties that can all communicate directly 
with each other and may have inputs and outputs


Each party runs a server (and at most one input and one 
output client)


Can compute any N-party function, tolerating corruption of  
strictly less than N/2 parties


e.g., 1 party out of 3, or 2 parties out of 5


No security in a 2-party setting!


Q: For which functions can we obtain information-theoretic 
security against N/2 (or more) corruption?


Not all functions!


Exactly known for N=2  (later)


General case is still an open problem!



Need honest majority for computing AND


Enough to show that 2 parties cannot compute AND securely

Because, if there were an N-party AND protocol tolerating 
N/2 corrupt parties, we can convert it into a 2-party 
protocol for AND as follows:


Alice runs P1,…,PN/2 “in her head”, with her input as P1’s 
input and 1 as input for the others. Bob runs the 
remaining parties similarly.


View of the parties in Alice's head don’t reveal anything 
about Bob’s input, other than what the AND reveals

Information-Theoretic MPC 
Without Honest-Majority?



Suppose there is a 2-party protocol for AND. Consider a 
transcript m such that Pr[m|x=0,y=0] = p > 0.


By security against Alice, Pr[m|x=0,y=1] = p.  
And by security against Bob, Pr[m|x=1,y=0] = p.


How about Pr[m|x=1,y=1]? Should be 0, for correctness


Suppose m=m1m2…mt, with Alice sending the first 
message. Alice with x=1 will send m1 with positive 
probability because Pr[m|x=1,y=0] > 0. Bob with y=1, and 
given m1 will send m2 with positive probability, etc.  
Hence Pr[m|x=1,y=1] > 0 !

Need honest majority for computing AND


Enough to show that 2 parties cannot compute AND securely

Information-Theoretic MPC 
Without Honest-Majority?



Today

Any N-party function can be perfectly securely computed 
against passive corruption of < N/2 parties


Linear functions can be perfectly securely computed against the 
corruption of any number of parties


There are many functions (e.g., AND) which cannot be 
information-theoretically securely computed if N/2 parties can 
be corrupted


Next: How to go beyond honest-majority (hint: not information-
theoretically)


