
Advanced Tools from
 Modern Cryptography

Lecture 7
Secure 2-Party Computation:

Yao’s Garbled Circuit

Plan (Still sticking with passive corruption):

Two protocols, that are secure computationally

The “passive-GMW” protocol for any number of parties

A 2-party protocol using Yao’s Garbled Circuits

Both rely on a computational primitive called Oblivious Transfer

Last time: OT and Passive-GMW

(Not exactly the version from the GMW’87 paper.)

Today: 2-Party protocol using Yao’s Garbled Circuits

MPC without Honest-MajorityRe
ca
ll

2-Party SFE
Secure Function Evaluation (SFE) IDEAL:

Trusted party takes (X;Y). Outputs
g(X;Y) to Alice, f(X;Y) to Bob

Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither
party knows r (beyond what is revealed by output)

OT is an instance of a (deterministic) 2-party SFE

g(x0,x1;b) = none; f(x0,x1;b) = xb

Single-Output SFE: only one party gets any output

Alice

Bob
FT

X Y

g(X;Y) f(X;Y)

2-Party SFE
Can reduce general SFE (even randomized) to a single-output
deterministic SFE

f’(X, M, r1; Y, r2) = (g(X; Y; r1⊕r2)⊕M, f(X; Y; r1⊕r2)).

Compute f’(X, M, r1; Y, r2) with random M, r1, r2

Bob sends g(X, Y; r1⊕r2)⊕M to Alice

Passive secure

For active security too: f’ authenticates (one-time MAC) as
well as encrypts g(X; Y; r1⊕r2) using keys input by Alice

Generalizes to more than 2 parties too [Exercise]

Yao: Reduces single-output deterministic 2-party SFE to OT

Single round of interaction, but with only computational
security (cf. GMW: information-theoretic, but many rounds)

All 2 of
them!

Oblivious Transfer
Pick one out of two,
without revealing
which

Intuitive property:
transfer partial
information
“obliviously”

FOT

We Predict

STOCKS!!

AA:up, B:down
I need
just one

x0 x1

F

b

xb

But can’t
tell you
which

up

Sure

If we had a
trusted third party

Re
ca
ll

Why is OT Useful?
Naïve 2PC from OT

Say Alice’s input x, Bob’s input y, and only Bob should learn f(x,y)

Alice (who knows x, but not y) prepares a table for f(x,⋅) with

D = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick up using
1-out-of-D OT (without learning the other entries)

Bob learns only f(x,y) (in addition to y). Alice learns nothing
beyond x.

OT captures the essence of MPC:
Secure computation of any function f can be reduced to OT

Problem: D is exponentially large in |y|

Plan: somehow exploit efficient computation (e.g., circuit) of f

Secure protocol for f using
access to ideal OT

Re
ca
ll

Functions as Circuits
Directed acyclic graph

Nodes: multiplication and addition
gates, constant gates, inputs,
output(s)

Edges: wires carrying values from F

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

10

-1

Re
ca
ll

2-Party MPC for
 General Circuits

“General”: evaluate any arbitrary (boolean) circuit

One-sided output: both parties give inputs, one
party gets outputs

Either party maybe corrupted passively

Consider evaluating OR (single gate circuit)

Alice holds x=a, Bob has y=b; Bob should get OR(x,y)

0 1

0 0 1

1 1 1

A Physical Protocol
Alice prepares 4 boxes Bxy corresponding to 4
possible input scenarios, and 4 padlocks/keys Kx=0,
Kx=1, Ky=0 and Ky=1

Inside Bxy=ab she places the bit OR(a,b) and locks it
with two padlocks Kx=a and Ky=b (need to open both
to open the box)

She un-labels the four boxes and sends them in
random order to Bob. Also sends the key Kx=a
(labeled only as Kx).

So far Bob gets no information

Bob “obliviously picks up” Ky=b, and tries the two
keys Kx,Ky on the four boxes. For one box both
locks open and he gets the output.

0

1

1

1

00

11

01

10

0 1

0 0 1

1 1 1

0 0

0

0

1

1 b

1 0

0 1

1 1

F

Secure?

For curious Alice: only influence from Bob is when
he picks up his key Ky=b

But this is done “obliviously”, so she learns
nothing

For curious Bob: What he sees is predictable (i.e.,
simulatable), given the final outcome

What Bob sees: His key opens Ky in two boxes,
Alice’s opens Kx in two boxes; only one random
box fully opens. It has the outcome.

Note when y=1, cases x=0 and x=1 appear same

0 1

0 0 1

1 1 1

0

1

1

1

0

0

1

1 b
F

A Physical Protocol

Larger Circuits

00 1 1

0 1

Idea: For each gate in the circuit Alice will
prepare locked boxes, but will use it to keep
keys for the next gate

For each wire w in the circuit (i.e., input wires,
or output of a gate) pick 2 keys Kw=0 and Kw=1

0 1 0 1 0 1

0 1 0 10 1

Larger Circuits

For each gate G with input wires (u,v) and output
wire w, prepare 4 boxes Buv and place Kw=G(a,b) inside
box Buv=ab. Lock Buv=ab with keys Ku=a and Kv=b

Give to Bob: Boxes for each gate, one key for each of
Alice’s input wires

Obliviously: one key for each of Bob’s input wires

Boxes for output gates have values instead of keys

00 1 1

0 1

bb
b

F

F

F

Idea: For each gate in the circuit Alice will
prepare locked boxes, but will use it to keep
keys for the next gate

For each wire w in the circuit (i.e., input wires,
or output of a gate) pick 2 keys Kw=0 and Kw=1

Larger Circuits
Evaluation: Bob gets one key for each input wire of a
gate, opens one box for the gate, gets one key for the
output wire, and proceeds

Gets output from a box for the output gate

Security similar to before

Curious Alice sees nothing

Bob can simulate his view given final output: Bob could
prepare boxes and keys (stuffing unopenable boxes
arbitrarily); for an output gate, place the output bit in
the box that opens

00 1 1

0 1

bb
b

F

F

F

Garbled Circuit
That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by Symmetric Key
Encryption (specifically, using a Pseudorandom Function or PRF)

EncK(m) = PRFK(index) ⊕ m, where index is a wire index

(distinct for different wires fanning-out of the same gate)

Double lock: EncKx(EncKy(m))

PRF in practice: a block-cipher, like AES

Uses Oblivious Transfer for strings: For passive security, can just
repeat bit-OT several times to transfer longer keys

Security? Need to first define security when computational
primitives are used! (Next time!)

Coming up

Garbled Circuit
One issue when using encryption instead of locks

Given four doubly locked boxes (in random order) and two
keys, we simply tried opening all locks until one box fully
opened

With encryption, cannot quite tell if a box opened or not!
Outcome of decryption looks random in either case.

Simple solution: encode the keys so that wrong decryption
does not result in outputs that look like valid encoding of keys

Better solution: For each wire 0 & 1 keys have
distinct “shape” labels, assigned at random.
Each locked box marked with the shape of
the two keys needed to unlock it.

00 1 1

0 1

