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Functionality
Protocol may also use (simpler) 

functionalities, like OT

Simulation-Based Security

Protocol is 
secure (and 
correct) if: 
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A (fully) secure 2-party protocol for coin-tossing, given an ideal 
commitment functionality Fcom

Alice sends a ∈ {0,1} to Fcom. (Bob gets “committed” from Fcom)

Bob sends b ∈ {0,1} to Alice

Alice sends “open” to Fcom. (Bob gets a from Fcom)
Both output c=a⊕b

Simulator:
Will get a bit c from Fcoin. Needs to simulate the corrupt 
party’s view in the protocol, including the interaction with Fcom

If Alice corrupt: Get a from Alice. Send b = a⊕c.  

(Block output if Alice doesn’t send “open” to Fcom.)
If Bob corrupt: Send “committed”. Get b. Send a = b⊕c.

Perfect simulation: Environment + Adversary’s view is identically 
distributed in REAL and IDEAL (verify!), and hence so is 
Environment’s output

Example: Coin-Tossing
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Zero-Knowledge Proof

In cryptographic settings, often need to be able to verify various claims

e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c

Proof 1: Reveal a,b,c and how they get encrypted into A,B,C

Proof 2: Without revealing anything at all about a,b,c except the fact 
that a=b+c ?

Zero-Knowledge Proof!

Important application to secure multi-party computation: to upgrade the 
security of MPC protocols from security against passive corruption to 
security against active corruption

(Next time)



An Example
Coke in bottle or can 

Prover claims: coke in 
bottle and coke in can are 
different 

ZK proof: 
prover tells whether      
cup was filled from       
can or bottle 

repeat till verifier 
is convinced

can/bottle 

Pour into       
from can 
or  bottle



Commitment
Recall the functionality of Commitment:

Committing to a value: Alice puts the message in a box, locks it, and 
sends the locked box to Bob, who learns nothing about the message

Revealing a value: Alice sends the key to Bob. At this point she can’t 
influence the message that Bob will get on opening the box.

Implementation in the Random Oracle Model: Commit(x) = H(x,r) where r is 
a long enough random string, and H is a random hash function (available 
as an oracle) with a long enough output. To reveal, send (x,r).

⚠ ROM is a heuristic model: Can do provably impossible tasks in this 

model!

An Example: To prove that the nodes of a graph can 
be coloured with at most 3 colours, so that adjacent 
nodes have different colours

commit
COMMIT:

F

m
m

reveal m
REVEAL:

Fm

Next Day



A ZK Proof for Graph 
Colourability

Uses a commitment 
protocol as a subroutine 

At least 1/#edges 
probability of catching a 
wrong proof 

Repeat many times  
with independent colour 
permutations

pick random 
edge

distinct 
colours?

Use 
ran

dom
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ZK Proofs Vocabulary
Statements: Of the form “∃w s.t. relation R(x,w) holds”, where R defines a class of 

statements, and x specifies the particular statement (which is a common input to 

prover and verifier)

e.g., Given a graph G, ∃ a colouring φ s.t. Valid(G,φ) holds

The relation R can be efficiently verified (polynomial time in size of x)

Set L =  { x | ∃w R(x,w) holds } is a language in NP

w is called a “witness” for x∈L

Completeness: If prover & verifier are honest, for all x∈L, and prover given a 

valid witness w, verifier will always accept

Soundness: If x∉L, no matter what a cheating prover does, an honest verifier will 

reject (except with negligible probability)

Proof-of-Knowledge: A stronger soundness notion

Zero-Knowledge: A (corrupt) verifier’s view can be simulated (honest prover,  x∈L)

Soundness can be required to hold even against computationally unbounded 

provers

ZK Argument system: Like a ZK proof system, but soundness only against 

PPT adversaries



ZK Property

proto proto
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Classical definition uses simulation 
only for corrupt receiver;

and uses only standalone security: 
Environment gets only a transcript at 
the end

x,w x

Secure (and 
correct) if: 


∀ PPT    


∃ PPT     s.t.


∀ PPT 

output of        
in REAL and 
IDEAL are 
almost identical

x

Statistical 
ZK: Allow 
unbounded  
environment

—



Ah, got it!
42

In Other Pictures…
Simulation only for corruption of 
verifier and stand-alone security 

ZK Property: 

A corrupt verifier’s view could have 
been “simulated” 

∀ adversarial strategy,  
∃ a simulation strategy  
which, ∀x ∈ L, produces  
an indistinguishable view 

Completeness and  
soundness defined  
separately

x in L

Ah, got it!
42



Two-Sided Simulation

protoproto

Env
REAL

i’face

Env

IDEAL

FR

x,w x

• Require simulation also when prover is corrupt

• Then simulator is a witness extractor


• Adding this (in standalone setting) makes it an Argument of Knowledge

x

Secure (and 
correct) if: 


∀ PPT    


∃ PPT     s.t.


∀ PPT 

output of        
in REAL and 
IDEAL are 
almost identical

Proof of Knowledge: 
unbounded prover & 

simulator, but 
require sim to run 
in comparable time

—
—



Some ZK Proof Techniques
Classic protocols for NP complete problems

e.g., graph 3 colorability (with standalone-secure commitment, 
instantiated using, say, one-way permutations)

Any NP language L has a ZK proof system via reduction to an NP 
complete problem

More generally, by committing to a “probabilistically checkable proof”

Can improve the communication efficiency

More efficient protocols for specific NP languages (avoiding the overhead 
of reduction to NP complete languages)

e.g., Proof of equality of discrete logs (coming up)

Using MPC as a robust encoding

“MPC-in-the-head” (later)

Non-interactive variants (later)

Often in the random-oracle model


