Advanced Tools from
Modern Cryptography

Lecture 9
Simulation (ctd.)
Zero-Knowledge Proofs

Simulation-Based Security

Protocol may also use (simpler)
functionalities, like OT

Functionality

¢ ®
A 9 =8

\
F
I Prdfocol is v
x seclure (and
correct) if: A
A
& T’ 3 & s.t. & T")

V&

output of @

is distributed

identically in REAL
REAL and IDEAL

(——)

Computational:
all PPT

proto

IDEAL

#> Example: Coin-Tossing
@ A (fully) secure 2-party protocol for coin-tossing, given an ideal
commitment functionality Feom
@ Alice sends a € {0,1} to Fcom. (Bob gets “committed” from Fcom)
@ Bob sends b € {0,1} to Alice
@ Alice sends “"open” to Fcom- (Bob gets a from Feom)
@ Both output c=a®b
@ Simulator:
@ Will get a bit ¢ from Fcoin. Needs to simulate the corrupt
party’s view in the protocol, including the interaction with Fcom
@ If Alice corrupt: Get a from Alice. Send b = a®c.
(Block output if Alice doesnt send “open” to Fcom.)
@ If Bob corrupt: Send “committed”. Get b. Send a = bac.
@ Perfect simulation: Environment + Adversary's view is identically
distributed in REAL and IDEAL (verify!), and hence so is
Environments output

Zero-Knowledge Proof

@ In cryptographic settings, often need to be able to verify various claims
@ e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c
@ Proof 1: Reveal a,b,c and how they get encrypted into A,B,C

@ Proof 2: Without revealing anything at all about a,b,c except the fact
that a=b+c ?

@ Zero-Knowledge Proof!

@ Important application to secure multi-party computation: to upgrade the
security of MPC protocols from security against passive corruption to
security against active corruption

@ (Next time)

An Example

3@ Coke in bottle or can

M Prover claims: coke in
bottle and coke in can are
different

B 2K proof:

® prover tells whether

Pour into
from can

or bottle

cup was filled from
-

can or bottle

repeat till verifier
® peatt it can/bottle

-

IS convinced

llllllllllllllllllllllllllllllllllll
EEEEE

@ Recall the functionality of Commitment: REVEAL: ° revea i m

@ Committing to a value: Alice puts the message in a box, locks it, and
sends the locked box to Bob, who learns nothing about the message

@ Revealing a value: Alice sends the key to Bob. At this point she cant
influence the message that Bob will get on opening the box.

@ Implementation in the Random Oracle Model: Commit(x) = H(x,r) where r is
a long enough random string, and H is a random hash function (available
as an oracle) with a long enough output. To reveal, send (x,r).

@ A\ ROM is a heuristic model: Can do provably impossible tasks in this
model!

@ An Example: To prove that the nodes of a graph can
be coloured with at most 3 colours, so that adjacent
nodes have different colours

A 2K Proof for Graph
Colourability

@ Uses a commitment

protocol as a subroutine

B At least 1/#edges
probability of catching a
wrong proof

B Repeat many times

I

commit 2 & plck random
with independent colour £ S : o b, edoe
S edge
permutations A R ‘

S
e W
{ N\ QO

l
distinct
¢ reveal @

<
?‘_ colours’?

ZK Proofs Vocabulary

Statements: Of the form “3aw s.t. relation R(x,w) holds”, where R defines a class of
statements, and x specifies the particular statement (which is a common input to
prover and verifier)

® e.g., Given a graph G, 3 a colouring ¢ s.t. Valid(G,$) holds

@ The relation R can be efficiently verified (polynomial time in size of x)

@ SetL = {x|awR(x,w) holds } is a language in NP

@ w is called a "witness” for xelL
Completeness: If prover & verifier are honest, for all xeL, and prover given a
valid witness w, verifier will always accept
Soundness: If x¢L, no matter what a cheating prover does, an honest verifier will
reject (except with negligible probability)

@ Proof-of-Knowledge: A stronger soundness notion
Zero-Knowledge: A (corrupt) verifiers view can be simulated (honest prover, xecl)

Soundness can be required to hold even against computationally unbounded
provers
@ ZK Argument system: Like a ZK proof system, but soundness only against
PPT adversaries

ZK Property

Classical definition uses simulation
. Only for corrupt receiver;
- and uses only standalone security:

y ki ~ Environment gets only a transcript at
5 - the end

Statistical ===

ZK: Allow
unbounded
environment

[

L 4

Secure (an(
correct) if:

<

°

—

peo
(_,{.‘4'

output of @
in REAL and
IDEAL are
almost identical

REAL
IDEAL

In Other Pictures::-

@ Simulation only for corruption of
verifier and stand-alone security

® 2K Property:

B A corrupt verifier's view could have
been “simulated”

@V adversarial strategy,

3 a simulation strategy

which, Vx € L, produces

an indistinguishable view

® Completeness and

soundness defined

separately

Two-Sided Simulation

® Require simulation also when prover is corrupt
® Then simulator is a witness extractor
® Adding this (in standalone setting) makes it an Argument of Knowledge

Proof of Knowledge:
X,W X ‘ w
i unbounded prover & A
e ;A P M pro’ro

simulator, but

require sim fo run
. . 4
. X in comparable time

< Secure|((and
correct) if: ‘
vV PR ﬂ
?

: 3 PRT & 5.1,
vV PPT @
output of @
in REAL and
IDEAL are

almost identical

REAL
IDEAL

Some ZK Proof Techniques

Classic protocols for NP complete problems

@ e.g., graph 3 colorability (with standalone-secure commitment,
instantiated using, say, one-way permutations)

@ Any NP language L has a ZK proof system via reduction to an NP
complete problem

More generally, by committing to a “probabilistically checkable proof”
@ Can improve the communication efficiency

More efficient protocols for specific NP languages (avoiding the overhead
of reduction to NP complete languages)

@ e.g., Proof of equality of discrete logs (coming up)
Using MPC as a robust encoding

@ “MPC-in-the-head” (later)
Non-interactive variants (later)

@ Often in the random-oracle model

