
Advanced Tools from
 Modern Cryptography

Lecture 9
Simulation (ctd.)

Zero-Knowledge Proofs

proto proto

Env
REAL

i’face i’face

Env

IDEAL

FF

Functionality
Protocol may also use (simpler)

functionalities, like OT

Simulation-Based Security

Protocol is
secure (and
correct) if:

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

Computational:
all PPT

Re
ca
ll

A (fully) secure 2-party protocol for coin-tossing, given an ideal
commitment functionality Fcom

Alice sends a ∈ {0,1} to Fcom. (Bob gets “committed” from Fcom)

Bob sends b ∈ {0,1} to Alice

Alice sends “open” to Fcom. (Bob gets a from Fcom)
Both output c=a⊕b

Simulator:
Will get a bit c from Fcoin. Needs to simulate the corrupt
party’s view in the protocol, including the interaction with Fcom

If Alice corrupt: Get a from Alice. Send b = a⊕c.

(Block output if Alice doesn’t send “open” to Fcom.)
If Bob corrupt: Send “committed”. Get b. Send a = b⊕c.

Perfect simulation: Environment + Adversary’s view is identically
distributed in REAL and IDEAL (verify!), and hence so is
Environment’s output

Example: Coin-Tossing
Re

ca
ll

Zero-Knowledge Proof

In cryptographic settings, often need to be able to verify various claims

e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c

Proof 1: Reveal a,b,c and how they get encrypted into A,B,C

Proof 2: Without revealing anything at all about a,b,c except the fact
that a=b+c ?

Zero-Knowledge Proof!

Important application to secure multi-party computation: to upgrade the
security of MPC protocols from security against passive corruption to
security against active corruption

(Next time)

An Example
Coke in bottle or can

Prover claims: coke in
bottle and coke in can are
different

ZK proof:
prover tells whether
cup was filled from
can or bottle

repeat till verifier
is convinced

can/bottle

Pour into
from can
or bottle

Commitment
Recall the functionality of Commitment:

Committing to a value: Alice puts the message in a box, locks it, and
sends the locked box to Bob, who learns nothing about the message

Revealing a value: Alice sends the key to Bob. At this point she can’t
influence the message that Bob will get on opening the box.

Implementation in the Random Oracle Model: Commit(x) = H(x,r) where r is
a long enough random string, and H is a random hash function (available
as an oracle) with a long enough output. To reveal, send (x,r).

⚠ ROM is a heuristic model: Can do provably impossible tasks in this

model!

An Example: To prove that the nodes of a graph can
be coloured with at most 3 colours, so that adjacent
nodes have different colours

commit
COMMIT:

F

m
m

reveal m
REVEAL:

Fm

Next Day

A ZK Proof for Graph
Colourability

Uses a commitment
protocol as a subroutine

At least 1/#edges
probability of catching a
wrong proof

Repeat many times
with independent colour
permutations

pick random
edge

distinct
colours?

Use
ran

dom

col
our

s

edge

G,colourin
g

OK

reveal

commit

ZK Proofs Vocabulary
Statements: Of the form “∃w s.t. relation R(x,w) holds”, where R defines a class of

statements, and x specifies the particular statement (which is a common input to

prover and verifier)

e.g., Given a graph G, ∃ a colouring φ s.t. Valid(G,φ) holds

The relation R can be efficiently verified (polynomial time in size of x)

Set L = { x | ∃w R(x,w) holds } is a language in NP

w is called a “witness” for x∈L

Completeness: If prover & verifier are honest, for all x∈L, and prover given a

valid witness w, verifier will always accept

Soundness: If x∉L, no matter what a cheating prover does, an honest verifier will

reject (except with negligible probability)

Proof-of-Knowledge: A stronger soundness notion

Zero-Knowledge: A (corrupt) verifier’s view can be simulated (honest prover, x∈L)

Soundness can be required to hold even against computationally unbounded

provers

ZK Argument system: Like a ZK proof system, but soundness only against

PPT adversaries

ZK Property

proto proto

Env
REAL

i’face

Env

IDEAL

FR

Classical definition uses simulation
only for corrupt receiver;

and uses only standalone security:
Environment gets only a transcript at
the end

x,w x

Secure (and
correct) if:

∀ PPT

∃ PPT s.t.

∀ PPT

output of
in REAL and
IDEAL are
almost identical

x

Statistical
ZK: Allow
unbounded
environment

—

Ah, got it!
42

In Other Pictures…
Simulation only for corruption of
verifier and stand-alone security

ZK Property:

A corrupt verifier’s view could have
been “simulated”

∀ adversarial strategy,
∃ a simulation strategy
which, ∀x ∈ L, produces
an indistinguishable view

Completeness and
soundness defined
separately

x in L

Ah, got it!
42

Two-Sided Simulation

protoproto

Env
REAL

i’face

Env

IDEAL

FR

x,w x

• Require simulation also when prover is corrupt

• Then simulator is a witness extractor

• Adding this (in standalone setting) makes it an Argument of Knowledge

x

Secure (and
correct) if:

∀ PPT

∃ PPT s.t.

∀ PPT

output of
in REAL and
IDEAL are
almost identical

Proof of Knowledge:
unbounded prover &

simulator, but
require sim to run
in comparable time

—
—

Some ZK Proof Techniques
Classic protocols for NP complete problems

e.g., graph 3 colorability (with standalone-secure commitment,
instantiated using, say, one-way permutations)

Any NP language L has a ZK proof system via reduction to an NP
complete problem

More generally, by committing to a “probabilistically checkable proof”

Can improve the communication efficiency

More efficient protocols for specific NP languages (avoiding the overhead
of reduction to NP complete languages)

e.g., Proof of equality of discrete logs (coming up)

Using MPC as a robust encoding

“MPC-in-the-head” (later)

Non-interactive variants (later)

Often in the random-oracle model

