Advanced Tools from Modern Cryptography

Lecture 12

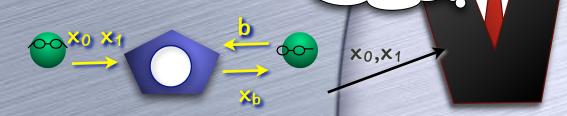
MPC: UC-secure OT

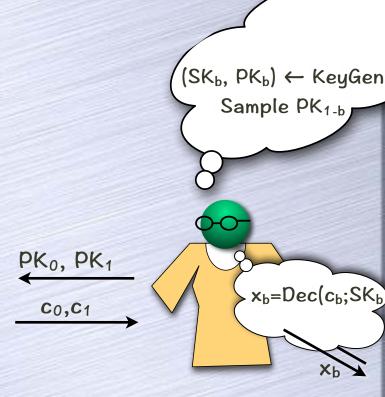
UC-Secure OT

- UC-secure OT is impossible (even against PPT adversaries) in the "plain model" (i.e., without the help of another functionality)
- But possible from simple setups
 - e.g., noisy channel (without computational assumptions)
 - e.g., common random coins (needs computational assumptions)
 - Today: from Common random string
 - Like common random coins, but reusable across multiple sessions

An OT Protocol (passive corruption)

- Using (a special) encryption
 - PKE in which one can sample a public-key without knowing secret-key
- © c_{1-b} inscrutable to a passive corrupt receiver
- Sender learns nothing $c_0 = Enc(x_0, PK_0)$ about b $c_1 = Enc(x_1, PK_1)$





Towards Active Security

- Should not let the receiver pick PK₀ and PK₁ independently!
- (PK₀,PK₁) tied together, in which at most one can be decrypted
 - \circ (PK₀,PK₁,SK) \leftarrow Gen(b) s.t. check(PK₀,PK₁) = True
 - SK decrypts $Enc(m;PK_b)$, but not $Enc(m;PK_{1-b})$. (PK₀,PK₁) hides b.
 - But a simulator should be able to extract b from (PK₀,PK₁) (if Receiver corrupt) and m from Enc(m;PK_{1-b}) (if Sender corrupt)
 - Scheme will use a <u>common random string</u> Q (to be generated by a trusted party)
 - During simulation Simulator can generate (Q,T) where T is a Trapdoor that can be used for extraction

Towards Active Security

- Need: Gen(Q,b) and check(PK₀,PK₁,Q) such that
 - **3** If (PK_0,PK_1,SK) ←Gen(Q,b): SK decrypts Enc $(m;PK_b)$, (PK_0,PK_1) hides b.
 - If check(PK₀,PK₁,Q) = True: Enc(m;PK₀) hides m for some c (even if (PK₀,PK₁) maliciously generated). Simulator should have trapdoors.
- Suppose two different types of setups possible such that:
 - Type 1 setup: Honestly generated (PK_0,PK_1) statistically hides b. Trapdoor decrypts both $Enc(m;PK_0)$ and $Enc(m;PK_1)$.
 - Type 2 setup: Honest $Enc(m;PK_c)$ statistically hides m for some c.

Trapdoor extracts such a c from any (PK_0,PK_1) .

PK_c said to

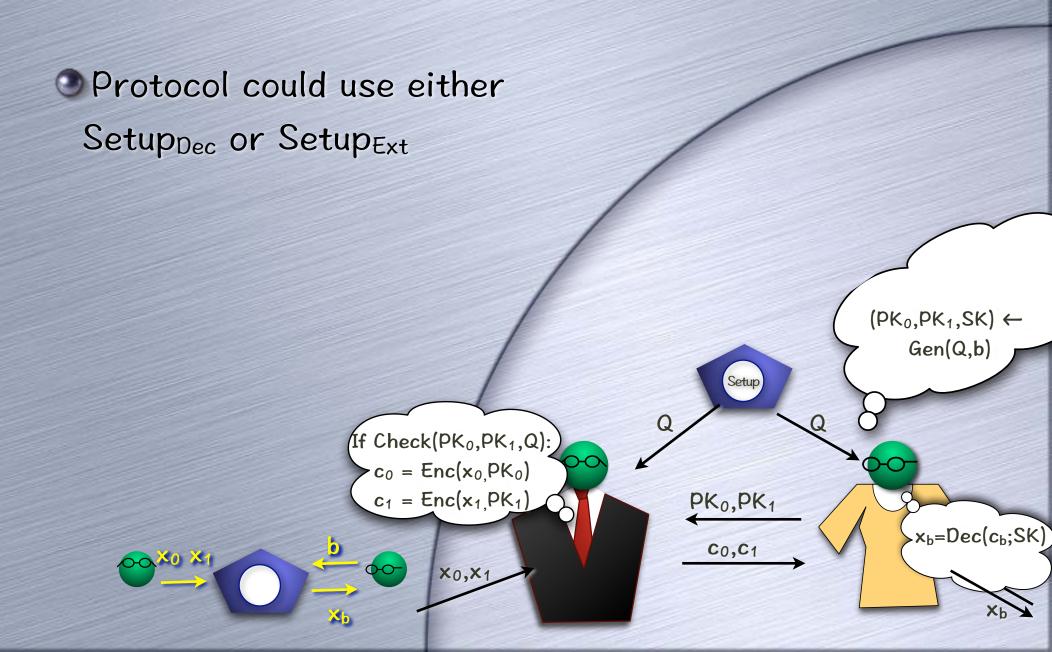
- Type 1 setup ≈ Type 2 setup (computationally)
- (PK₀,PK₁) computationally hides b in Type 2 setup too.

 Enc(m;PK_c) computationally hides m for some c in Type 1 setup too.
- Simulation when Sender corrupt: Use Type 1 setup
- Simulation when Receiver corrupt: Use Type 2 setup

Dual-Mode Encryption (DME)

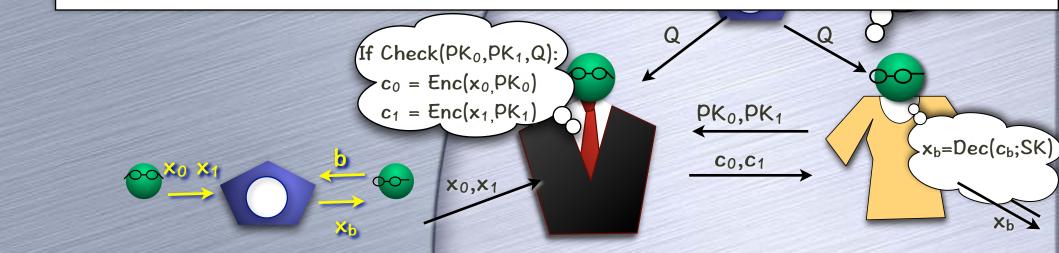
- Algorithms: Setup_{Dec}, Setup_{Ext}, Gen, Check, Enc, Dec
 - Q from Setup_{Dec} and Setup_{Ext} indistinguishable
 - **②** If (PK_0,PK_1,SK) ← Gen(Q,b), then $Check(PK_0,PK_1,Q)$ =True, and $Dec(Enc(x,PK_b), SK) = x$
- Two more algorithms required to exist by security property: FindLossy and TrapKeyGen
 - Given trapdoor from Setup_{Ext}, and a pair PK₀, PK₁ which passes the Check, FindLossy can find a lossy PK out of the two
 - Given trapdoor from Setup_{Dec}, TrapKeyGen can correctly generate (PK₀, PK₁), along with decryption keys SK₀, SK₁

OT from DME



OT from DME

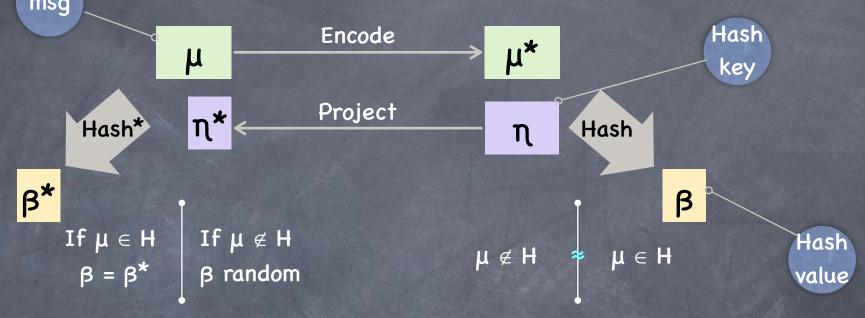
- Simulation for corrupt sender:
 - 0. $(Q,T) \leftarrow Setup_{Dec}$, send Q.
 - 1. $(PK_0, PK_1, SK_0, SK_1) \leftarrow TrapKeyGen(T)$, and send (PK_0, PK_1)
 - 2. On getting (c_0,c_1) , extract (x_0,x_1) using (SK_0,SK_1) and send to F_{OT}
- For corrupt receiver:
 - $0. (Q,T) \leftarrow Setup_{Ext}$, send Q.
 - 1. On getting (PK_0,PK_1) , send b:=1-FindLossy (PK_0,PK_1,T) to F_{OT} , get x_b
 - 2. Send $c_b = Enc(x_b, PK_b)$ and $c_{1-b} = Enc(0, PK_{1-b})$



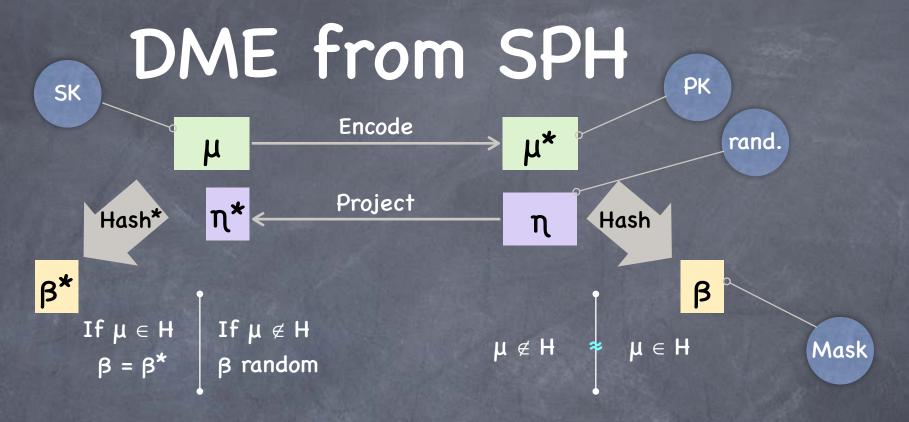
Dual-Mode Encryption (DME)

- High-level idea for constructing a DME
 - PKE s.t. a (hidden) subset of the PK-space is "lossy"
 - $Q = PK. Require that <math>PK_0 \cdot PK_1 = PK$
 - Receiver can pick only one PK_b. Other gets determined by Q
 - But maybe both can still be non-lossy!
 - Fix: Non-lossy subset is a sub-group, and Q = PK, a lossy key
 - $PK_0 \cdot PK_1 = PK \Rightarrow not both in the non-lossy subgroup!$
- Coming up: A primitive called SPH which allows a DME construction as above
 - And a construction of SPH from "Decisional Diffie-Hellman" assumption

Smooth Projective Hash (SPH)



- \odot Public parameters θ used by all algorithms. Trapdoor τ
- \odot Encode: M \rightarrow M* is a group homomorphism
- ⊕ H ⊆ M group s.t. given only θ, distributions $\{\mu^*\}_{\mu \leftarrow \mu} \approx \{\mu^*\}_{\mu \leftarrow \mu \setminus \mu}$
 - But using τ, can perfectly distinguish the two distributions
 - So, μ ∈ H ⇔ μ* ∈ H*, where $H* = { μ* | μ ∈ H } a group$

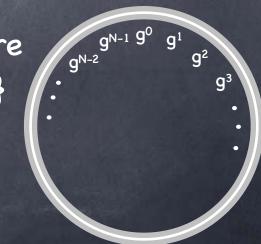


- SPH gives a PKE scheme, with Hash as Enc, Hash* as Dec
- Setup: Sample SPH params (θ,τ). Let μ←M. Let Q=(μ*,θ), T=(μ,τ)
 - **⑤** Setup_{Dec}: μ ∈ H. Setup_{Ext}: μ ∉ H.
- If $\mu^* \notin H^*$, given (μ_0^*, μ_1^*) s.t. $\mu_0^* \cdot \mu_1^* = \mu^*$, at least one of $\mu_0, \mu_1 \notin H$. Can find using τ . (FindLossy)

 This is Check(PK₀,PK₁)
- If $\mu^* \in H^*$, using μ , can find (μ_0, μ_1) s.t. $\mu_0^* \cdot \mu_1^* = \mu^*$ and both $\mu_0, \mu_1 \in H$ (TrapKeyGen)

Groups

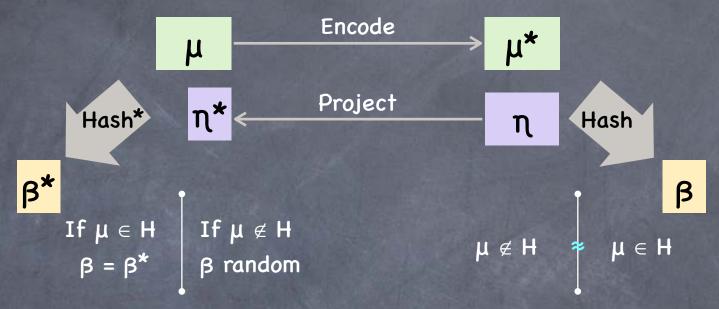
- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: $\mathbb{Z} = (\text{integers}, +)$ (this is an infinite group), $\mathbb{Z}_N = (\text{integers modulo N, + mod N}),$ $G^n = (\text{Cartesian product of a group G, coordinate-wise operation})$
- Order of a group G: |G| = number of elements in G
- For any a∈G, $a^{|G|} = a * a * ... * a (|G| times) = identity$
- Finite Cyclic group (in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$



Decisional Diffie-Hellman (DDH) Assumption

- Assumption about a distribution of finite cyclic groups and generators
- Note: Requires that it is hard to find x from gx
- Typically, G required to be a prime-order group. So arithmetic in the exponent is in a field.
- A formulation equivalent to DDH in prime-order groups:
 - - If can distinguish the above, then can break DDH: map (G, g, g^x , g^y , h) \mapsto (G, g, g^a , g^x , $g^{y,a}$, h) where $a \leftarrow [|G|]$

SPH from DDH Assumption



- SPH from DDH assumption on a prime order group G
 - $(G, g, g^a, g^b, g^{au}, g^{bu})_{(G,g),a,b,u} \approx \{(G, g, g^a, g^b, g^{au}, g^{bv})\}_{(G,g),a,b,u,v}$

$$\theta = (G,g,g^{a},g^{b}), \tau = (a,b)$$
 $\eta = (s,t) \text{ and } \eta^{*} = g^{as+bt}.$
 $\mu = (u,v) \text{ and } \mu^{*} = (g^{a.u}, g^{b.v}). \mu \in H \text{ iff } u=v.$
 $Hash(\mu^{*},\eta) = g^{a.u.s} g^{b.v.t} \text{ and } Hash^{*}(\mu,\eta^{*}) = g^{(as+bt).u}$

For random s,t, and u≠v,
and non-zero a,b,
aus+bvt is random
given only (as+bt,u,v,a,b)