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UC-Secure 
 Information-Theoretic MPC

UC secure MPC protocols for general functions

UC security without honest-majority

Needs setup (e.g., GMW paradigm, using CRS for ZK)

In fact, information-theoretic security possible, given OT

UC security with honest Majority:

No setup needed

With selective abort if < n/2 parties corrupt

Can even get guaranteed output delivery and perfect security 
if < n/3 corrupt: BGW Protocol  (Today)



Verifiable Protocol 
Execution

We already saw passive secure BGW protocol

So need to only implement a functionality FVPE which carries out 
the protocol on behalf of all the parties

Progress? Seems like we still need MPC for general functions!

But easier: Every variable/computation in FVPE is “owned” 
by some party



VPE Functionality
FVPE maintains a state for each party (image), and carries out 
“public” instructions (sent by a majority of parties) on these 
images

FVPE supports:

Uploading a variable to one’s own image. The value being 
uploaded is private. (The operation itself is public.)

An addition or multiplication within an image

Transferring a variable from one image to another 

Can at any point read a variable in one’s own image

Plan for implementing FVPE: Every variable will be maintained as 
a commitment by its owner to the others 



Commitment: First Cut
Simply do (n,t+1) secret-sharing of the message among all the n 
players (e.g., degree t Shamir secret-sharing)

To reveal, sender broadcasts all the shares and all the parties 
must agree. If the broadcast shares are valid, accept 
reconstruction. Else abort.

For n-t ≥ t+1 (i.e., t < n/2), honest parties’ shares already 
define a unique secret. Corrupt sender (in a collusion of t 
players) cannot open to two values

Problem 1: A single corrupt party can cause abort

Problem 2: Does not ensure that there is a valid commitment! If 
commitments are not just opened, but computed on, problematic.



Commitment with 
Guaranteed Opening

When t < n/3, can prevent adversary from causing abort at any 
point (except, a corrupt sender can make all honest parties abort)

Idea: Before accepting a commitment, do consistency checks to 
ensure that honest players’ shares do define a valid polynomial. 

Problem: Corrupt parties can claim inconsistency with honest 
players’ shares (“dispute”)

Idea: Let sender resolve disputes between two parties by 
publishing both their shares

Problem: Adversary sees more information by disputing.

Idea: Information published is already known to the adversary



Commitment with 
Guaranteed Opening

Use a bivariate polynomial f(x,y), of degree t in each variable, with 
f(0,0) being the message. Party Pj gets f(i,j) for all i.

i.e., Party Pj gets a degree t univariate polynomial fj(x) := f(x,j)

Will require f(i,j) = f(j,i) 

Checking:

Pi and Pj check if f(i,j) = f(j,i)

Also, Pj checks what it got is indeed a degree t polynomial

Disputing: If either check fails, Pj broadcasts a complaint

Resolution: Sender broadcasts f(i,j) or degree-t fj respectively

Repeat until no more disputes

If sender caught cheating in its broadcast, all honest parties abort

f(x,y) = Σ cp,q xpyq, with cp,q = cq,p and c0,0=msg



Commitment with 
Guaranteed Opening

If sender honest

Before any disputes, corrupt players (<t) learn nothing about 
the message

There is a bijection between sharings of m and sharings of 
0, which preserves the view of the adversary

Consider degree t polynomial h(x) s.t. h(0)=1, and h(j)=0 
for all corrupt Pj

Bijection maps f(x,y) to f(x,y) - m ⋅ h(x)h(y)

Messages revealed during dispute resolution are all messages 
known to the corrupt parties

Opening: Each party Pj sends f(0,j) to the receiver. Receiver 

reconstructs the degree t polynomial f(0,y), with error correction 
from up to t errors [algorithm omitted] Not relying on sender



Commitment with 
Guaranteed Opening

If sender corrupt:

Either sender aborts before all disputes settled,

Or, no dispute remaining among the honest players. Then  
{ f(i,j) | i,j honest } is part of a valid sharing of f(0,0), and 
determines f(0,0) uniquely.  
 
 
 

Opening: Each party Pj computes and sends f(0,j) to the receiver. 

Receiver reconstructs the degree t polynomial f(0,y), with error 
correction from up to t errors [algorithm omitted]

Honest Pj verified that row j is a degree t polynomial f(x,j)

Pj receives column j from other parties, and it equals row j

Equals a linear combination of honest rows. Hence degree t.



Why t < n/3?
t<n/3 needed for broadcast with guaranteed output delivery (later)

Even if broadcast given as an ideal functionality, the BGW protocol 
needs t < n/3

To uniquely decode a codeword from ≤ t errors, need distance 
between valid codewords to be > 2t (otherwise can have an 
invalid codeword which is t away from two valid codewords). But 
for degree t polynomials, minimum distance = n-t [Why?].  
So, n-t > 2t. i.e., n > 3t

Note: Given broadcast, there are protocols that can tolerate t < n/2 
corruption with statistical security (BGW has perfect security)



Recall VPE Functionality
FVPE maintains a state for each party (image), and carries out 
“public” instructions (sent by a majority of parties) on these 
images

FVPE supports:

Uploading a variable to one’s own image. The value being 
uploaded is private. (The operation itself is public.)

An addition or multiplication within an image

Transferring a variable from one image to another 

Can at any point read a variable in one’s own image

Plan for implementing FVPE: Every variable will be maintained as 
a commitment by its owner to the others 



A VPE Protocol
Every variable maintained as a commitment by its owner to the 
others, where commitment is using the symmetric bivariate 
polynomial secret-sharing. Uploading: Commitment.

Linear operations: If f, g shares of a, b, then αf+βg is a share of 
αa+βb (with the same dealer)

Multiplication: Owner should send a fresh commitment of c and 
give a proof of c=a⋅b, that can be verified collectively

Proof of c=a⋅b: Pick degree t polynomials p, q with constant 

terms a, b, and let r=p.q, a degree 2t polynomial with constant 
term c. a,b,c already committed. Commit other coefficients. 
Evaluations p(i), q(i), r(i) are computed (using linear operations) 
and revealed to party Pi who checks if  p(i)⋅q(i) = r(i). If all 

n-t > 2t honest parties agree, then indeed p⋅q=r.

For guaranteed output, if a party doesn’t make a 
commitment, open up its entire image



Every variable maintained as a commitment by its owner to the 
others, where commitment is using the symmetric bivariate 
polynomial secret-sharing. Uploading: Commitment.

Linear operations: If f, g shares of a, b, then αf+βg is a share of 
αa+βb (with the same dealer)

Multiplication: Owner should send a fresh commitment of c and 
give a proof of c=a⋅b, that can be verified collectively

Transfer: To transfer a committed variable a from Pi to Pj, Pi opens 
it to Pj and Pj recommits it. Then Pi, Pj cooperate to prove equality

To prove values a, b committed by Pi, Pj are equal, they commit 
to coefficients of (identical) degree t polynomials p, q with 
constant terms a, b respectively, and open p(k),q(k) to Pk who 
checks p(k)=q(k)

A VPE Protocol

For guaranteed output, if a party doesn’t make a 
commitment, open up its entire image



Broadcast
Our protocol relied on broadcast to ensure all honest parties 
have the same view of disputes, resolution etc.

Concern addressed by broadcast: a corrupt sender can send 
different values to different honest parties

Broadcast with selective abort can be implemented easily, even 
without honest majority

Sender sends message to everyone. Every party cross-checks 
with everyone else, and aborts if there is any inconsistency.

If corruption threshold t < n/3, then it turns out that broadcast 
with guaranteed output delivery can be implemented [omitted]

If broadcast given as a setup, can do MPC with guaranteed 
output delivery for up to t < n/2


