Advanced Tools from
Modern Cryptography

Lecture 14
MPC: Fairness and Guaranteed Output Delivery
Some Impossibility Results

General MPC

@ Information-theoretic security

@ Passive with corruption threshold t <n/2 < passive BoW/CCD |

@ Passive with OT setup {Passive GMW]

@ Guaranteed Output UC with t < n/3 <[BGW]

@ Guaranteed Output UC with t < n/2 and Broadcasf{ Rabin-BenOr
@ Selective Abort UC, with OT l Kilian (Also IPS) |

@ Computational security

@ Passive { Composing Yao or Passive GMW with a passive-secure OT protocol]

@ Standalone <[GMW: using ZK proofs

@ Selective Abort UC, with CRS
Composing Kilian with a CRS-based UC-secure OT protocol]

MPC Dimensions

>

Output delivery

Protocol Constraints

and features ,
Commitment .
Broadcast b

Complexity %oy 7 Corruption

Parameters
T Static - Staundalone Threshold

Universally Composable

Basic Dimensions

@ Adversary’s computational power: PPT adversary, Information-
theoretic security

@ Honest majority: Thresholds 1 (no honest majority), ¥4 and ‘4

@ Security Level: Passive security, UC security with selective abort,
or UC security with guaranteed output delivery

@ Trusted setup: Point-to-point channels, Broadcast, Common
Reference String (CRS), OT

Output Delivery

@ 3 levels:
@ Unfair (a.k.a., selective abort)

@ Adversary can see its output and decide which set of
honest parties receive theirs

@ Fair

@ Adversary can cause abort for all parties before seeing its
output. To get its output, should let all parties get theirs.

@ Guaranteed output delivery

@ Adversary cannot prevent honest parties from producing
an output. (Adversary will have well-defined inputs no
matter what it does.)

@ Today: Impossibility of fairness/quaranteed output delivery even
for some very simple tasks, if there is no honest majority

Fair Coin-Tossing

@ For 2-party functions, fair protocol = guaranteed output delivery

@ Modify a fair protocol: if aborted, locally compute the output
(with a fixed input for the other party)
@ 2-party fair coin-tossing from commitment?
@ Alice commits to a random bit a, Bob sends a bit b, Alice
opens and they output a @ b
@ Unfair: Alice can abort after learning the outcome

@ Two parties can never obtain a fair coin, given only unfair setups,
even under computational assumptions, even for standalone
security, even against fail-stop adversaries

@ Unfair setup: Sends outputs to the parties one at a time.

Adversary can abort at any point.

Fair Coin-Tossing

@ Guaranteed output delivery: Each party has a tentative output
after each message it receives, if an abort happens right after it

@ Best possible unfair setup: F runs the protocol on behalf of the
parties; at each round, sends each party its tentative output.

@ Xo,Yo if abort before start. Then F Sends X; (to Alice), Y: (to
Bob), Xz, Y2, ..., Xn, Yn. Allows adversary to abort at any point.

@ Xo,Yo independent; also uniform (by correctness for abort at start)
@ Correctness when no abort: Pr[X.=b, Yn=b]=V2, for be{0,1}

@ Pr[Xi=Y;] went from V2 to 1: So 3Ti s.t. Pr[Xi=Yi]-Pr[Xi.1=Yi-1] 2 1/(2n).
i.e., PrXi=Yi]-Pr[Xi=Yi_.1] + PrXi=Yi.1]-Pr[Xi_.1=Yi-1] 2 1/(2n)

@ So, some i s.t. either Pr[Xi=Yi]-Pr[Xi=Yi-1] 2 1/(4n) or
Pr(Xi=Yi.1]-Pr[Xi.1=Yi-1] 2 1/(4n)

@ But will ShOW, Vi PI"[Xi=Yi] = PI"[Xi=Yi_1] and PI"[Xi=Yi_1] = pl"[Xi_1=Yi-1]) |

Fair Coin-Tossing

@ To show Pr[Xi=Yi] = Pr[Xi=Yi_.1] (and similarly Pr[Xi=Yi.1] = Pr[Xi.1=Yi-1])

@ Firstly, PrYi.1=0] = V2, Pr[Yi=0] = ¥/2 (by correctness against Alice
who aborts after Yi.; and one who aborts after Y;)

@ Consider two more attackers for corrupt Alice:
Ao: If Xi=0, abort immediately, else abort after Y; delivered
Ai: If Xi=1, abort immediately, else abort after Y; delivered

@ Under attack by Ao,
Pr[Bob outputs 0] = Pr[Xi=0,Yi.1=0] + Pr[Xi=1,Y;=0]
= Pr[Xi=0,Yi.1=0] - Pr[Xi=0,Y;=0] + Pr[Y;=0]
= Pr[Xi=0,Yi.1=0] = Pr[Xi=0,Yi=0]

@ Similarly, from A;, Pr[Xi=1,Yi.1=1] = Pr[Xi=1,Yi=1]
o SOI pr[Xi=Yi_1] = PI"[XizYi]

Broadcast

@ BGW protocol relied on broadcast to ensure all honest parties
have the same view of disputes, resolution etc.

@ Concern addressed by broadcast: a corrupt sender can send
different values to different honest parties

@ Broadcast with selective abort can be implemented easily, even
without honest majority

@ Sender sends message to everyone. Every party cross-checks
with everyone else, and aborts if there is any inconsistency.

@ If corruption threshold t < n/3, then it turns out that broadcast
' implemented

@ If broadcast given c
output delivery for up to t < n/2

with guaranteed

No Broadcast with Guaranteed
Output if 1/3 Corrupt

@ Broadcast requirements (message being a single bit):

@ If sender honest, all honest parties should output the bit
it sends (cant abort)

@ All honest parties should agree on the outcome (cant have
some output O and others 1)

S
Consider 6 parties running the

code for A, B, C (A is the sender)

Adversary corrupting C

Note: cant do this if A, B allowed
to have a priori shared secrets

/

(say message authentication keys)
N\ J

No Broadcast with Guaranteed
Output if 1/3 Corrupt

@ Broadcast requirements (message being a single bit):

@ If sender honest, all honest parties should output the bit
it sends (cant abort)

@ All honest parties should agree on the outcome (cant have
some output O and others 1)

©. @ < Output 1 |

Topu ;@?«7)

No Broadcast with Guaranteed
Output if 1/3 Corrupt

@ Broadcast requirements (message being a single bit):

@ If sender honest, all honest parties should output the bit
it sends (cant abort)

@ All honest parties should agree on the outcome (cant have

some output O and others 1)
Ou’rpuf g L/ufpu’r |

e

No Broadcast with Guaranteed
Output if 1/3 Corrupt

@ Broadcast requirements (message being a single bit):

@ If sender honest, all honest parties should output the bit
it sends (cant abort)

@ All honest parties should agree on the outcome (cant have

some output O and others 1)
@ Impossible to satisfy both constraints simultaneously, if 1/3 can

be corrupt
@ Irrespective of what computational assumptions are used!

@ But a priori shared keys can give broadcast with guaranteed
output delivery against unrestricted corruption (in the

synchronous model)

