
Advanced Tools from
 Modern Cryptography

Lecture 14
MPC: Fairness and Guaranteed Output Delivery

Some Impossibility Results

General MPC
Information-theoretic security

Passive with corruption threshold t < n/2

Passive with OT setup

Guaranteed Output UC with t < n/3

Guaranteed Output UC with t < n/2 and Broadcast

Selective Abort UC, with OT

Computational security

Passive

Standalone

Selective Abort UC, with CRS

Passive BGW/CCD

BGW

Kilian (Also IPS)

GMW: using ZK proofs

Passive GMW

Composing Yao or Passive GMW with a passive-secure OT protocol

Composing Kilian with a CRS-based UC-secure OT protocol

Rabin-BenOr

Unfair

Fair

Guaranteed

Output delivery

Passive

Adversary

Active
Covert

½⅓ Corruption
Threshold

1

Composition

Standalone

Universally Composable

Commitment
OT

Broadcast

Set-up

MPC Dimensions

Adaptive

Static

Synchronous

Asynchronous

Time
Model

Complexity
Parameters

None

Inefficient

Efficient

Simulation

Protocol Constraints
and features

Basic Dimensions

Adversary’s computational power: PPT adversary, Information-
theoretic security

Honest majority: Thresholds 1 (no honest majority), ½ and ⅓

Security Level: Passive security, UC security with selective abort,
or UC security with guaranteed output delivery

Trusted setup: Point-to-point channels, Broadcast, Common
Reference String (CRS), OT

Output Delivery
3 levels:

Unfair (a.k.a., selective abort)

Adversary can see its output and decide which set of
honest parties receive theirs

Fair

Adversary can cause abort for all parties before seeing its
output. To get its output, should let all parties get theirs.

Guaranteed output delivery

Adversary cannot prevent honest parties from producing
an output. (Adversary will have well-defined inputs no
matter what it does.)

Today: Impossibility of fairness/guaranteed output delivery even
for some very simple tasks, if there is no honest majority

For 2-party functions, fair protocol ⇒ guaranteed output delivery

Modify a fair protocol: if aborted, locally compute the output
(with a fixed input for the other party)

2-party fair coin-tossing from commitment?
Alice commits to a random bit a, Bob sends a bit b, Alice
opens and they output a ⊕ b

Unfair: Alice can abort after learning the outcome

Two parties can never obtain a fair coin, given only unfair setups,
even under computational assumptions, even for standalone
security, even against fail-stop adversaries

Unfair setup: Sends outputs to the parties one at a time.
Adversary can abort at any point.

Fair Coin-Tossing

Guaranteed output delivery: Each party has a tentative output
after each message it receives, if an abort happens right after it

Best possible unfair setup: F runs the protocol on behalf of the
parties; at each round, sends each party its tentative output.

X0,Y0 if abort before start. Then F Sends X1 (to Alice), Y1 (to
Bob), X2, Y2, …, Xn, Yn. Allows adversary to abort at any point.

X0,Y0 independent; also uniform (by correctness for abort at start)

Correctness when no abort: Pr[Xn=b, Yn=b]=½, for b∈{0,1}

Pr[Xi=Yi] went from ½ to 1: So ∃i s.t. Pr[Xi=Yi]-Pr[Xi-1=Yi-1] ≥ 1/(2n).
i.e., Pr[Xi=Yi]-Pr[Xi=Yi-1] + Pr[Xi=Yi-1]-Pr[Xi-1=Yi-1] ≥ 1/(2n)

So, some i s.t. either Pr[Xi=Yi]-Pr[Xi=Yi-1] ≥ 1/(4n) or
Pr[Xi=Yi-1]-Pr[Xi-1=Yi-1] ≥ 1/(4n)

But will show, ∀i Pr[Xi=Yi] ≈ Pr[Xi=Yi-1] and Pr[Xi=Yi-1] ≈ Pr[Xi-1=Yi-1]) !

Fair Coin-Tossing

To show Pr[Xi=Yi] ≈ Pr[Xi=Yi-1] (and similarly Pr[Xi=Yi-1] ≈ Pr[Xi-1=Yi-1])

Firstly, Pr[Yi-1=0] ≈ ½, Pr[Yi=0] ≈ ½ (by correctness against Alice
who aborts after Yi-1 and one who aborts after Yi)

Consider two more attackers for corrupt Alice:
A0: If Xi=0, abort immediately, else abort after Yi delivered
A1: If Xi=1, abort immediately, else abort after Yi delivered

Under attack by A0,
Pr[Bob outputs 0] = Pr[Xi=0,Yi-1=0] + Pr[Xi=1,Yi=0]
 = Pr[Xi=0,Yi-1=0] - Pr[Xi=0,Yi=0] + Pr[Yi=0]
⇒ Pr[Xi=0,Yi-1=0] ≈ Pr[Xi=0,Yi=0]

Similarly, from A1, Pr[Xi=1,Yi-1=1] ≈ Pr[Xi=1,Yi=1]

So, Pr[Xi=Yi-1] ≈ Pr[Xi=Yi]

Fair Coin-Tossing

Broadcast
BGW protocol relied on broadcast to ensure all honest parties
have the same view of disputes, resolution etc.

Concern addressed by broadcast: a corrupt sender can send
different values to different honest parties

Broadcast with selective abort can be implemented easily, even
without honest majority

Sender sends message to everyone. Every party cross-checks
with everyone else, and aborts if there is any inconsistency.

If corruption threshold t < n/3, then it turns out that broadcast
with guaranteed output delivery can be implemented

If broadcast given as a setup, can do MPC with guaranteed
output delivery for up to t < n/2

Re
ca
ll

Otherwise not!

Consider 6 parties running the

code for A, B, C (A is the sender)

No Broadcast with Guaranteed
Output if 1/3 Corrupt

Broadcast requirements (message being a single bit):

If sender honest, all honest parties should output the bit
it sends (can’t abort)

All honest parties should agree on the outcome (can’t have
some output 0 and others 1)

A

B

B

A

C

C

Input 1
Input 0

Output 0

Note: can’t do this if A, B allowed

to have a priori shared secrets

(say message authentication keys)

Adversary corrupting C

Broadcast requirements (message being a single bit):

If sender honest, all honest parties should output the bit
it sends (can’t abort)

All honest parties should agree on the outcome (can’t have
some output 0 and others 1)

A

B

B

A

C

C Output 1

Input 1
Input 0

No Broadcast with Guaranteed
Output if 1/3 Corrupt

Broadcast requirements (message being a single bit):

If sender honest, all honest parties should output the bit
it sends (can’t abort)

All honest parties should agree on the outcome (can’t have
some output 0 and others 1)

A

B

B

A

C

C

A

B

B

A

C

C

A

B

B

A

C

C

Output 1Output 0

No Broadcast with Guaranteed
Output if 1/3 Corrupt

Broadcast requirements (message being a single bit):

If sender honest, all honest parties should output the bit
it sends (can’t abort)

All honest parties should agree on the outcome (can’t have
some output 0 and others 1)

Impossible to satisfy both constraints simultaneously, if 1/3 can
be corrupt

Irrespective of what computational assumptions are used!

But a priori shared keys can give broadcast with guaranteed
output delivery against unrestricted corruption (in the
synchronous model)

No Broadcast with Guaranteed
Output if 1/3 Corrupt

