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Encryption & Homomorphic Encryption



Public-Key Encryption
Syntax


KeyGen outputs (PK,SK) ← PK ×SK


Enc: M ×PK ×R →C


Dec: C ×SK → M  

Correctness


∀(PK,SK) ∈ Range(KeyGen), Dec( Enc(m,PK), SK) = m


Security


Against Chosen-Plaintext Attack: IND-CPA security


(Stronger notions of security exist: e.g., IND-CCA security)

a.k.a. asymmetric-key encryption
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IND-CPA Secure PKE

IND-CPA secure if for all PPT adversaries  Pr[b’=b] - 1/2 ≤ ν(k)
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Diffie-Hellman        
Key-exchange

A candidate for how Alice and Bob could generate a 
shared key, which is “hidden” from Eve

Random x
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Why DH-Key-exchange 
could be secure

Given gx, gy for random x, y, gxy should be “hidden”


i.e., could still be used as a pseudorandom element


i.e., (gx, gy, gxy) ≈ (gx, gy, R)


[Recall] Decisional DH Assumption: A family of cyclic groups, with 
 

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|]  ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|] 
 

where (G,g) s.t. g is generator for G (and typically |G| prime, so 
that operations in exponent are in a field)


There are families of number-theoretic and algebraic (elliptic 
curve) groups for which DDH is assumed to hold



El Gamal Encryption

Based on DH key-exchange


Bob’s “message” in the key-
exchange is his PK


Alice’s message in the key-
exchange and the message 
masked with this key together 
form a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)


  Enc(G,g,Y)(M) = (X=gx, C=MYx)


  Dec(G,g,y)(X,C) = CX-y


• KeyGen uses GroupGen to get (G,g)

• x, y uniform from [|G|]

• Message encoded into group element, and  
decoded



El Gamal IND-CPA secure if DDH holds (for the collection of 
groups used)


Construct a DDH adversary A* given an IND-CPA adversary A 
 
 
 
 
 

When z=xy, exactly IND-CPA experiment:  
A* outputs 1 with probability = 1/2 + advantage of A.


When z=random, A* outputs 1 with probability = 1/2

Security of El Gamal
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Homomorphic Encryption

Group Homomorphism: Two groups G and G’ are homomorphic 
if there exists a function (homomorphism) f:G→G’ such that 
for all x,y ∈ G,  f(x) +G’ f(y)  = f(x +G y) 


Homomorphic Encryption: A CPA secure (public-key) encryption 
s.t.  Dec(C) +M Dec(D)  = Dec (C +C D) for ciphertexts C, D 


i.e. Enc(x) +C Enc(y) is like Enc(x +M y)


Interesting when +C doesn’t require the decryption key


e.g. El Gamal: (gx1,m1Yx1) × (gx2,m2Yx2) = (gx3,m1m2Yx3)



Rerandomization
Often (but not always) another property is required of a 
homomorphic encryption scheme


Unlinkability


For any two ciphertexts cx=Enc(x) and cy=Enc(y),  
Add(cx,cy) should be identically distributed as Enc(x +M y).  
Add is a randomized operation


Alternately, a ReRand operation s.t. for all valid ciphertexts cx, 
ReRand(cx) is identically distributed as Enc(x)


Then, we can let Add(cx,cy) = ReRand(cx +c cy) where +c may 
be deterministic


Rerandomization useful even without homomorphism


e.g. El Gamal: Rerand maps (gx,mYx) ↦  (gxgr, mYxYr) for r←[|G|]



Using an (unlinkable) rerandomizable 
encryption scheme 

Receiver picks (PK,SK). Sends PK and  
cb = E(1), c1-b = E(0), 

Sender “multiplies” ci with xi:         
1*c:=ReRand(c), 0*c:=E(0) 

Simulation for passive-corrupt 
receiver: set zb = E(xb) and  

z1-b = E(0) 

Simulation for passive-corrupt 
sender: let c0,c1 be E(1), say 

In both cases, send input 
from environment to  
functionality

An OT Protocol 
(for passive corruption)

cb=E(1), 

c1-b=E(0)

xb=D(zb)PK, c0, c1

z0 = x0 * c0  

z1 = x1 * c1

z0, z1

x0,x1 b

xb



Homomorphic Encryption 
for MPC

Recall GMW (passive-secure): each input was secret-shared 
among the parties, and computed on shares, using pair-wise OTs 
for × gates


Alternate approach that avoids pair-wise communication: each 
wire value is kept encrypted, publicly, and the key is kept shared


All parties encrypt their inputs and publish


Evaluate each wire using homomorphism (coming up)


Finally decrypt the output wire value using threshold 
decryption


Threshold decryption: KeyGen protocol so that PK is public 
and SK shared; Decryption protocol that lets the parties 
decrypt a ciphertext keeping their SK shares private

all communication will 
be of this form



Threshold El Gamal 
(Passive Security)

Goal: n parties to generate a PK for El Gamal, so that SK is 
shared amongst them. Can decrypt messages only if all n parties 
come together. Will require security against passive corruption.


Distributed Key-Generation:  

(G,g) ← Groupgen by Party1 (DDH should hold for Party1 too)

Each Partyi picks random exponent yi and publishes Yi = gyi


All parties compute Y = Πi Yi. Public-key = (G,g,Y) 

Secret-key = (G,g,y), where y := Σi yi (secret). Note: Y = gy




Encryption as in El Gamal


Distributed Decryption: Given ciphertext (X,C), each party 

publishes Ki
-1 = X-yi . All parties compute K-1 = Πi Ki

-1 and M = CK-1



Homomorphic Encryption 
for MPC

Passive-securely computing using homomorphism


Notation: Encrypted values shown as [m] etc.


Operations available: [x]+[y] = [x+y], and a*[x] = [ax]


Also, distributed key generation and threshold decryption


Addition directly, without communication


Multiplication: All parties have [x] and [y]. Need [xy].

Each party Pi picks ai,bi and publishes [ai], [bi], [aiy], [bix]

All compute [x+a], [y+b], [ay], [bx] where a = Σi ai and b = Σi bi


Each Pi publishes [aib] = ai*[b], and all compute [ab]

Threshold decrypt (x+a),(y+b). Compute [z] where z=(x+a)(y+b).

All compute [xy] = [z] - [ay] - [bx] - [ab]



Homomorphic Encryption 
for MPC

Passive-securely computing using homomorphism


Notation: Encrypted values shown as [m] etc.


Operations available: [x]+[y] = [x+y], and a*[x] = [ax]


Also, distributed key generation and threshold decryption


Addition directly, without communication


Multiplication: All parties have [x] and [y]. Need [xy].
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