
Advanced Tools from
 Modern Cryptography

Lecture 16

Encryption & Homomorphic Encryption

Public-Key Encryption
Syntax

KeyGen outputs (PK,SK) ← PK ×SK

Enc: M ×PK ×R →C

Dec: C ×SK → M

Correctness

∀(PK,SK) ∈ Range(KeyGen), Dec(Enc(m,PK), SK) = m

Security

Against Chosen-Plaintext Attack: IND-CPA security

(Stronger notions of security exist: e.g., IND-CCA security)

a.k.a. asymmetric-key encryption

SIM-CPA

Enc

Dec

Env
REAL

IDEAL

Send Recv

Env

m m

m

m m

PK

PK

Secure (and
correct) if:

∀

∃ s.t.

∀

output of is
distributed
indistinguishably in
REAL and IDEAL

PK

SK

IND-CPA Secure PKE

IND-CPA secure if for all PPT adversaries Pr[b’=b] - 1/2 ≤ ν(k)

KeyGen

Enc

b←{0,1}
m0,m1

Enc(mb,PK)

PK

IND-CPA +
~correctness

equivalent to

SIM-CPA

mb

b’
=b?

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

gxy ??

Why DH-Key-exchange
could be secure

Given gx, gy for random x, y, gxy should be “hidden”

i.e., could still be used as a pseudorandom element

i.e., (gx, gy, gxy) ≈ (gx, gy, R)

[Recall] Decisional DH Assumption: A family of cyclic groups, with

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|] ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

where (G,g) s.t. g is generator for G (and typically |G| prime, so
that operations in exponent are in a field)

There are families of number-theoretic and algebraic (elliptic
curve) groups for which DDH is assumed to hold

El Gamal Encryption

Based on DH key-exchange

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the message
masked with this key together
form a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)

• x, y uniform from [|G|]

• Message encoded into group element, and
decoded

El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

When z=xy, exactly IND-CPA experiment:
A* outputs 1 with probability = 1/2 + advantage of A.

When z=random, A* outputs 1 with probability = 1/2

Security of El Gamal

PK=(G,g,gy)

(gx,mbgz)

(G,g,gx,gy,gz)

(m0,m1)b←{0,1}
mb

b’
=b?

A

A*

Homomorphic Encryption

Group Homomorphism: Two groups G and G’ are homomorphic
if there exists a function (homomorphism) f:G→G’ such that
for all x,y ∈ G, f(x) +G’ f(y) = f(x +G y)

Homomorphic Encryption: A CPA secure (public-key) encryption
s.t. Dec(C) +M Dec(D) = Dec (C +C D) for ciphertexts C, D

i.e. Enc(x) +C Enc(y) is like Enc(x +M y)

Interesting when +C doesn’t require the decryption key

e.g. El Gamal: (gx1,m1Yx1) × (gx2,m2Yx2) = (gx3,m1m2Yx3)

Rerandomization
Often (but not always) another property is required of a
homomorphic encryption scheme

Unlinkability

For any two ciphertexts cx=Enc(x) and cy=Enc(y),
Add(cx,cy) should be identically distributed as Enc(x +M y).
Add is a randomized operation

Alternately, a ReRand operation s.t. for all valid ciphertexts cx,
ReRand(cx) is identically distributed as Enc(x)

Then, we can let Add(cx,cy) = ReRand(cx +c cy) where +c may
be deterministic

Rerandomization useful even without homomorphism

e.g. El Gamal: Rerand maps (gx,mYx) ↦ (gxgr, mYxYr) for r←[|G|]

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK and
cb = E(1), c1-b = E(0),

Sender “multiplies” ci with xi:
1*c:=ReRand(c), 0*c:=E(0)

Simulation for passive-corrupt
receiver: set zb = E(xb) and

z1-b = E(0)

Simulation for passive-corrupt
sender: let c0,c1 be E(1), say

In both cases, send input
from environment to
functionality

An OT Protocol
(for passive corruption)

cb=E(1),

c1-b=E(0)

xb=D(zb)PK, c0, c1

z0 = x0 * c0

z1 = x1 * c1

z0, z1

x0,x1 b

xb

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each input was secret-shared
among the parties, and computed on shares, using pair-wise OTs
for × gates

Alternate approach that avoids pair-wise communication: each
wire value is kept encrypted, publicly, and the key is kept shared

All parties encrypt their inputs and publish

Evaluate each wire using homomorphism (coming up)

Finally decrypt the output wire value using threshold
decryption

Threshold decryption: KeyGen protocol so that PK is public
and SK shared; Decryption protocol that lets the parties
decrypt a ciphertext keeping their SK shares private

all communication will
be of this form

Threshold El Gamal
(Passive Security)

Goal: n parties to generate a PK for El Gamal, so that SK is
shared amongst them. Can decrypt messages only if all n parties
come together. Will require security against passive corruption.

Distributed Key-Generation:

(G,g) ← Groupgen by Party1 (DDH should hold for Party1 too)

Each Partyi picks random exponent yi and publishes Yi = gyi

All parties compute Y = Πi Yi. Public-key = (G,g,Y)

Secret-key = (G,g,y), where y := Σi yi (secret). Note: Y = gy

Encryption as in El Gamal

Distributed Decryption: Given ciphertext (X,C), each party

publishes Ki
-1 = X-yi . All parties compute K-1 = Πi Ki

-1 and M = CK-1

Homomorphic Encryption
for MPC

Passive-securely computing using homomorphism

Notation: Encrypted values shown as [m] etc.

Operations available: [x]+[y] = [x+y], and a*[x] = [ax]

Also, distributed key generation and threshold decryption

Addition directly, without communication

Multiplication: All parties have [x] and [y]. Need [xy].

Each party Pi picks ai,bi and publishes [ai], [bi], [aiy], [bix]

All compute [x+a], [y+b], [ay], [bx] where a = Σi ai and b = Σi bi

Each Pi publishes [aib] = ai*[b], and all compute [ab]

Threshold decrypt (x+a),(y+b). Compute [z] where z=(x+a)(y+b).

All compute [xy] = [z] - [ay] - [bx] - [ab]

Homomorphic Encryption
for MPC

Passive-securely computing using homomorphism

Notation: Encrypted values shown as [m] etc.

Operations available: [x]+[y] = [x+y], and a*[x] = [ax]

Also, distributed key generation and threshold decryption

Addition directly, without communication

Multiplication: All parties have [x] and [y]. Need [xy].

xy

+

x +
a

a1 an…

a1 an…

x+a
x+a

+

y +
b

b1 bn…

b1 bn…

y+b
y+b

×
z

z=(x+a)(y+b)

a1 an…

*y *y
+

ay

b1 bn…

*x *x
+

bx

a1 an…

*b *b
+

ab

