Advanced Tools from Modern Cryptography

Lecture 16
Encryption & Homomorphic Encryption

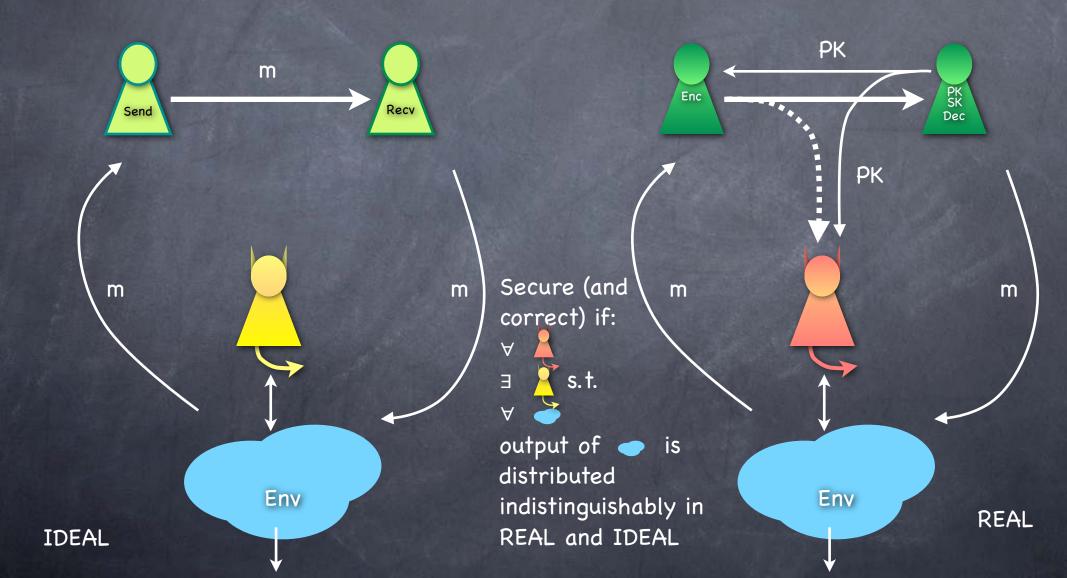
Public-Key Encryption

Syntax

a.k.a. asymmetric-key encryption

- KeyGen outputs (PK,SK) $\leftarrow PK \times SK$
- Enc: $\mathcal{M} \times \mathcal{P} \mathcal{K} \times \mathcal{R} \rightarrow \mathcal{C}$
- Dec: C×SK→ M
- Correctness
- Security
 - Against Chosen-Plaintext Attack: IND-CPA security
 - (Stronger notions of security exist: e.g., IND-CCA security)

SIM-CPA



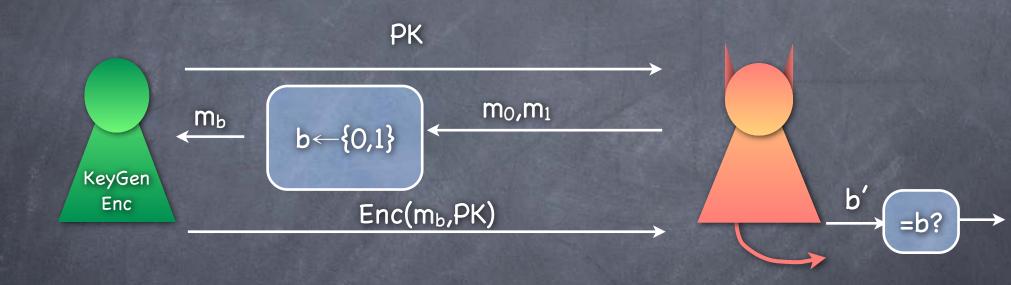
IND-CPA Secure PKE correctness

IND-CPA +

correctness

equivalent to

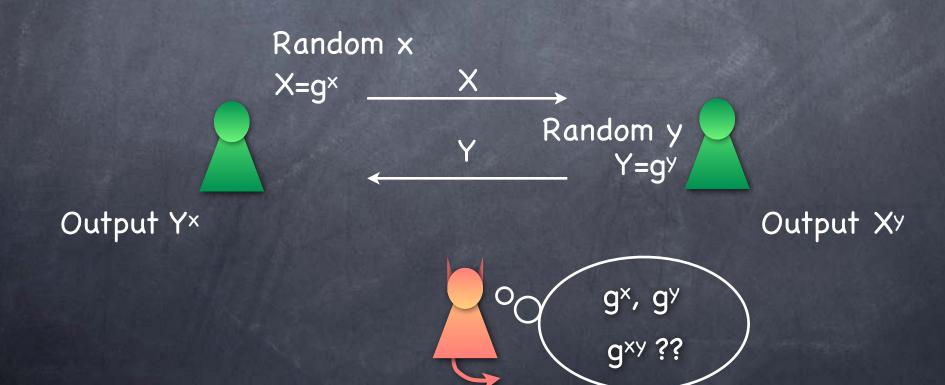
SIM-CPA



IND-CPA secure if for all PPT adversaries Pr[b'=b] - 1/2 ≤ v(k)

Diffie-Hellman Key-exchange

A candidate for how Alice and Bob could generate a shared key, which is "hidden" from Eve



Why DH-Key-exchange could be secure

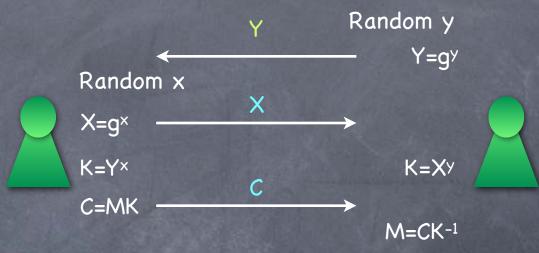
- Given gx, gy for random x, y, gxy should be "hidden"
 - o i.e., could still be used as a pseudorandom element
 - i.e., (g^x, g^y, g^{xy}) ≈ (g^x, g^y, R)
- [Recall] Decisional DH Assumption: A family of cyclic groups, with

```
\{(g^x, g^y, g^{xy})\}(G,g)\leftarrow GroupGen; x,y\leftarrow [|G|] \approx \{(g^x, g^y, g^r)\}(G,g)\leftarrow GroupGen; x,y,r\leftarrow [|G|]
```

- where (G,g) s.t. g is generator for G (and typically |G| prime, so that operations in exponent are in a field)
- There are families of number-theoretic and algebraic (elliptic curve) groups for which DDH is assumed to hold

El Gamal Encryption

- Based on DH key-exchange
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the message masked with this key together form a single ciphertext

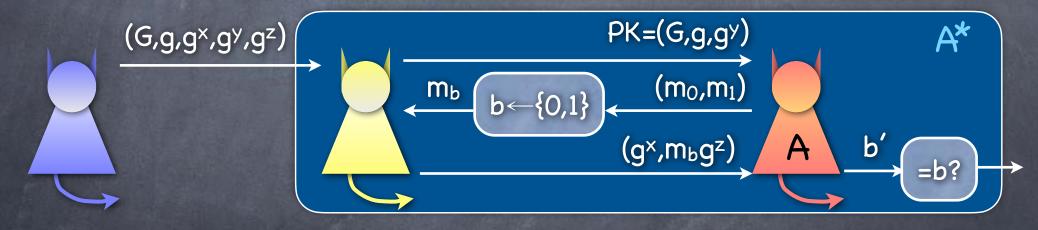


KeyGen:
$$PK=(G,g,Y)$$
, $SK=(G,g,y)$
 $Enc_{(G,g,Y)}(M) = (X=g^{\times}, C=MY^{\times})$
 $Dec_{(G,g,y)}(X,C) = CX^{-y}$

- KeyGen uses GroupGen to get (G,g)
- x, y uniform from [|G|]
- Message encoded into group element, and decoded

Security of El Gamal

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
 - Construct a DDH adversary A* given an IND-CPA adversary A



- When z=xy, exactly IND-CPA experiment:
 A* outputs 1 with probability = 1/2 + advantage of A.
- When z=random, A* outputs 1 with probability = 1/2

Homomorphic Encryption

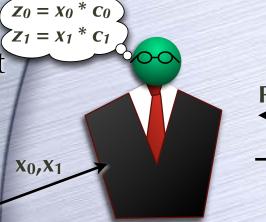
- Group Homomorphism: Two groups G and G' are homomorphic if there exists a function (homomorphism) $f:G \rightarrow G'$ such that for all $x,y \in G$, $f(x) +_{G'} f(y) = f(x +_G y)$
- Homomorphic Encryption: A CPA secure (public-key) encryption s.t. $Dec(C) +_M Dec(D) = Dec(C +_C D)$ for ciphertexts C, D
 - i.e. $Enc(x) +_C Enc(y)$ is like $Enc(x +_M y)$
 - \bullet Interesting when +c doesn't require the decryption key
- e.g. El Gamal: $(g^{x1}, m_1Y^{x1}) \times (g^{x2}, m_2Y^{x2}) = (g^{x3}, m_1m_2Y^{x3})$

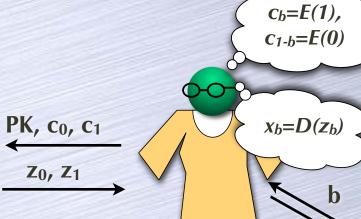
Rerandomization

- Often (but not always) another property is required of a homomorphic encryption scheme
- Unlinkability
 - For any two ciphertexts $c_x=Enc(x)$ and $c_y=Enc(y)$, Add(c_x,c_y) should be identically distributed as $Enc(x +_M y)$. Add is a randomized operation
- Alternately, a ReRand operation s.t. for all valid ciphertexts c_x, ReRand(c_x) is identically distributed as Enc(x)
 - Then, we can let $Add(c_{x,}c_{y}) = ReRand(c_{x} +_{c} c_{y})$ where $+_{c}$ may be deterministic
 - Rerandomization useful even without homomorphism
- e.g. El Gamal: Rerand maps $(g^x, mY^x) \mapsto (g^xg^r, mY^xY^r)$ for $r \leftarrow [|G|]$

An OT Protocol (for passive corruption)

- Using an (unlinkable) rerandomizable encryption scheme
 - Receiver picks (PK,SK). Sends PK and $c_b = E(1)$, $c_{1-b} = E(0)$,
 - Sender "multiplies" c_i with x_i : 1*c:=ReRand(c), 0*c:=E(0)
- Simulation for passive-corrupt receiver: set $z_b = E(x_b)$ and $z_{1-b} = E(0)$
- Simulation for passive-corrupt sender: let c_0, c_1 be E(1), say
 - In both cases, send input from environment to functionality





Homomorphic Encryption for MPC

- Recall GMW (passive-secure): each input was secret-shared among the parties, and computed on shares, using pair-wise OTs for × gates
- Alternate approach that avoids pair-wise communication: each wire value is kept encrypted, publicly, and the key is kept shared
 - All parties encrypt their inputs and publish all communication will be of this form
 - Evaluate each wire using homomorphism (coming up)
 - Finally decrypt the output wire value using threshold decryption
 - Threshold decryption: KeyGen protocol so that PK is public and SK shared; Decryption protocol that lets the parties decrypt a ciphertext keeping their SK shares private

Threshold El Gamal (Passive Security)

- Goal: n parties to generate a PK for El Gamal, so that SK is shared amongst them. Can decrypt messages only if all n parties come together. Will require security against passive corruption.
- Distributed Key-Generation:
 - \circ (G,g) \leftarrow Groupgen by Party₁ (DDH should hold for Party₁ too)
 - Each Partyi picks random exponent yi and publishes Yi = gyi
 - All parties compute $Y = \Pi_i Y_i$. Public-key = (G,g,Y)
 - Secret-key = (G,g,y), where $y := \Sigma_i y_i$ (secret). Note: $Y = g^y$
- Encryption as in El Gamal
- Distributed Decryption: Given ciphertext (X,C), each party publishes $K_i^{-1} = X^{-y_i}$. All parties compute $K^{-1} = \Pi_i K_i^{-1}$ and $M = CK^{-1}$

Homomorphic Encryption for MPC

- Passive-securely computing using homomorphism
 - Notation: Encrypted values shown as [m] etc.
 - Operations available: [x]+[y] = [x+y], and a*[x] = [ax]
 - Also, distributed key generation and threshold decryption
- Addition directly, without communication
- Multiplication: All parties have [x] and [y]. Need [xy].
 - Each party P_i picks a_i,b_i and publishes [a_i], [b_i], [a_iy], [b_ix]
 - All compute [x+a], [y+b], [ay], [bx] where $a = \Sigma_i a_i$ and $b = \Sigma_i b_i$
 - Each P_i publishes [a_ib] = a_i*[b], and all compute [ab]
 - Threshold decrypt (x+a),(y+b). Compute [z] where z=(x+a)(y+b).
 - All compute [xy] = [z] [ay] [bx] [ab]

Homomorphic Encryption for MPC

- Passive-securely computing using homomorphism
 - Notation: Encrypted values shown as [m] etc.
 - Operations available: [x]+[y] = [x+y], and a*[x] = [ax]
 - Also, distributed key generation and threshold decryption
- Addition directly, without communication
- Multiplication: All parties have [x] and [y]. Need [xy].

$$\begin{bmatrix} a_1 & \cdots & a_n \\ a_1 & \cdots & a_n \\ \vdots \\ a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} b_1 & \cdots & b_n \\ b_1 & \cdots & b_n \\ \vdots \\ y+b \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ y & \vdots \\ x+a \end{bmatrix} \begin{bmatrix} b_1 & \cdots & b_n \\ \vdots \\ y+b \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} b_1 & \cdots & b_n \\ \vdots \\ y+b \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \\ \vdots \\ x+a \end{bmatrix}$$