
Advanced Tools from
 Modern Cryptography

Lecture 17

Homomorphic Encryption. Application to PIR.

Homomorphic Encryption

Group Homomorphism: Two groups G and G’ are homomorphic
if there exists a function (homomorphism) f:G→G’ such that
for all x,y ∈ G, f(x) +G’ f(y) = f(x +G y)

Homomorphic Encryption: A CPA secure (public-key) encryption
s.t. Dec(C) +M Dec(D) = Dec (C +C D) for ciphertexts C, D

i.e. Enc(x) +C Enc(y) is like Enc(x +M y)

Interesting when +C doesn’t require the decryption key

e.g. El Gamal: (gx1,m1Yx1) × (gx2,m2Yx2) = (gx3,m1m2Yx3)

Homomorphic Encryption
El Gamal needs messages to be in a “hard group” G (DDH holds)

Not a concern in encryption: just use any efficiently
computable/invertible mapping from message space M to G

(efficient inversion needed during decryption)

But for homomorphic encryption, group operation will be
that of G

Since group operation in M desired, will need mapping

from M to G to be a homomorphism

But if M is not a hard group (e.g., Zn), will need G to

have a large enough non-hard subgroup

Need a hardness assumption that allows this

Goldwasser-Micali
Message space M is Z2 (i.e., bits with XOR as group operation)

Ciphertext space contained in Zn* where n = pq, p and q being

large primes

Fact: (z(p-1)/2 mod p, z(q-1)/2 mod q) = (±1, ±1)

Idea: If p, q not given, not easy to find this pair

But turns out, can distinguish {(+1,+1),(-1,-1)} vs. {(+1,-1),(-1,+1)}

Quadratic Residuosity Assumption: Given only n, hard to
distinguish between (+1,+1) and (-1,-1) types

Idea: Encryption of 0 is a random z of (+1,+1) type and
encryption of 1 is a random z of (-1,-1) type

(+1,+1) type can be sampled as x2 mod n for random x

(-1,-1) type: Given one z* of (-1,-1) type (can be part of
PK), sample z = x2.z*

Jacobi symbol

z(p-1) ≡ 1 mod p
√1 = ±1 mod p

Goldwasser-Micali

Message space M is Z2 (i.e., bits with XOR as group operation)

Public key = (n, z*) where n = pq, p and q being large primes
and z* is a random element of type (-1,-1). Secret Key = (p,q).

Enc: 0 ↦ x2 mod n, and Enc: 1 ↦ x2.z* mod n

Decryption: Using p, q, compute (z(p-1)/2 mod p, z(q-1)/2 mod q)

Homomorphism: Enc(a⊕b) same as Enc(a).Enc(b)

Uses Zn2* ≃ Zn × Zn*, for a specially chosen n

Isomorphism: ψ(a,b) = gabn (mod n2) where g=(1+n)

Fact: ψ can be efficiently inverted if factorization of n known

“Decisional Composite Residuosity” assumption: Given n=pq
(but not p,q), ψ(0,rand) looks like ψ(rand,rand) (i.e., random)

Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

(Additive) Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψ(m,r).ψ(m’,r’) = ψ(m+m’,r.r’)

IND-CPA secure under DCR

Unlinkability: ReRand(c) = c.Enc(0)

Multiplication by plain-text: a * Enc(m) = (ψ(m,r))a = ψ(am,ra)

in Zn2*

Paillier’s Scheme

in Zn

n = pq for primes p, q,
within 2× of each other

Private Information Retrieval

Setting: A server holds a large vector of values (“database”).
Client wants to retrieve the value at a particular index i

Client wants privacy against an honest-but-curious server

Server has no security requirements

Trivial solution: Server sends the entire vector to the client

PIR: to do it with significantly less communication

Variant (not today): multiple-server PIR, with non-colluding
servers

Private Information Retrieval

Single-server PIR using additive homomorphic encryption (need
not be unlinkable)

Client sends some encrypted representation of the index
(need CPA security here)

Server operates on the entire database using this
encryption (homomorphically), so that the message in the
resulting encrypted data has the relevant answer (and
maybe more). It sends this (short) encrypted data to client,
who decrypts to get answer.

In the following: database values are integers in [0,m), and we
can use any homomorphic encryption scheme with a message
space isomorphic with Zn with n ≥ m

e.g., Paillier encryption with message space Zn (n ≥ m)

For integer a and ciphertext c, can define a*c recursively:
0*c = E(0); 1*c = c; (a+b)*c = a*c [+] b*c.

Private Information Retrieval

ya ay
*

[+]
yx x+y

0

0

:

1

:

0

0

0

:

1

:

0

Private Information Retrieval

x1

x2

:

xi

:

xN

0

0

:

xi

:

0

xi xixi

*

[+]

Dec

i

Server communication
is very short. But

client communication
is larger than the db!

0 .. 0

0 0

: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN

xij

0 .. 1 .. 0

0 .. xij .. 0 xij

Considering
ciphertext
as plaintext

for the
sub-PIR

Can chop
ciphertexts
into smaller

blocks

Recurse?
Exponential
in recursion

depth
Use PIR
again!

Private Information Retrieval
Can dramatically improve efficiency if we have an efficient
“recursive” homomorphic encryption scheme where:

Ciphertext in one level is plaintext in the next level

In Paillier, public-key (i.e., n) fixes the group for
homomorphic operation (i.e., Zn)

Ciphertext size increases only “additively” from level to level

In Paillier, size of ciphertext about double that of the
plaintext.

Such a scheme: Damgård-Jurik cryptosystem

Damgård-Jurik Scheme
Uses Zn(s+1)* ≃ Zns x Zn*, n=pq as in Paillier Encryption

Isomorphism: ψs(a,b) = gabns where g=(1+n)

ψs can still be efficiently inverted if p,q known (but more involved)

Recall Decisional Composite Residuosity assumption: Given n=pq
(but not p,q), ψ1(0,rand) looks like ψ1(rand,rand)

Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*

Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψs(m,r).ψs(m’,r’) = ψs(m+m’,r.r’)

Recursive encryption: Output (ciphertext) of ψs (Zn(s+1)*) is an input

(plaintext) for ψs+1 (Zn(s+1)) for the same public-key n.

Note: s log n bits encrypted to (s+1)log n bits.

IND-CPA secure under DCR (same as for Paillier)

Unlinkability and multiplication by plaintext as in Paillier

in

Zn(s+1)*

in Zns

Final PIR protocol

0 1

xi

0 1

0

1 0

:

0

Size of ciphertext at depth
d is O(d log m) where m is
the range of values in DB

Assuming log m ≥
security parameter

Total communication from
client = O(log2N log m),
where N is the number of
entries in the DB

Total communication from
server = O(log N log m)

0

*

+

