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Homomorphic Encryption. Application to PIR.



Homomorphic Encryption

Group Homomorphism: Two groups G and G’ are homomorphic 
if there exists a function (homomorphism) f:G→G’ such that 
for all x,y ∈ G,  f(x) +G’ f(y)  = f(x +G y) 


Homomorphic Encryption: A CPA secure (public-key) encryption 
s.t.  Dec(C) +M Dec(D)  = Dec (C +C D) for ciphertexts C, D 


i.e. Enc(x) +C Enc(y) is like Enc(x +M y)


Interesting when +C doesn’t require the decryption key


e.g. El Gamal: (gx1,m1Yx1) × (gx2,m2Yx2) = (gx3,m1m2Yx3)



Homomorphic Encryption
El Gamal needs messages to be in a “hard group” G (DDH holds)


Not a concern in encryption: just use any efficiently 
computable/invertible mapping from message space M to G 

(efficient inversion needed during decryption)


But for homomorphic encryption, group operation will be 
that of G 


Since group operation in M desired, will need mapping 

from M to G to be a homomorphism


But if M is not a hard group (e.g., Zn), will need G to 

have a large enough non-hard subgroup


Need a hardness assumption that allows this



Goldwasser-Micali
Message space M is Z2 (i.e., bits with XOR as group operation)


Ciphertext space contained in Zn* where n = pq, p and q being 

large primes


Fact: (z(p-1)/2 mod p, z(q-1)/2 mod q) = (±1, ±1)


Idea: If p, q not given, not easy to find this pair


But turns out, can distinguish {(+1,+1),(-1,-1)} vs. {(+1,-1),(-1,+1)}


Quadratic Residuosity Assumption: Given only n, hard to 
distinguish between (+1,+1) and (-1,-1) types


Idea: Encryption of 0 is a random z of (+1,+1) type and 
encryption of 1 is a random z of (-1,-1) type 


(+1,+1) type can be sampled as x2 mod n for random x


(-1,-1) type: Given one z* of (-1,-1) type (can be part of 
PK), sample z = x2.z*

Jacobi symbol

z(p-1) ≡ 1 mod p 
√1 = ±1 mod p



Goldwasser-Micali

Message space M is Z2 (i.e., bits with XOR as group operation)


Public key = (n, z*) where n = pq, p and q being large primes 
and z* is a random element of type (-1,-1). Secret Key = (p,q).


Enc: 0 ↦ x2 mod n, and Enc: 1 ↦ x2.z* mod n


Decryption: Using p, q, compute (z(p-1)/2 mod p, z(q-1)/2 mod q)


Homomorphism: Enc(a⊕b) same as Enc(a).Enc(b)



Uses Zn2* ≃ Zn × Zn*, for a specially chosen n


Isomorphism: ψ(a,b) = gabn (mod n2) where g=(1+n)


Fact: ψ can be efficiently inverted if factorization of n known


“Decisional Composite Residuosity” assumption: Given n=pq  
(but not p,q), ψ(0,rand) looks like ψ(rand,rand) (i.e., random)


Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*


(Additive) Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)


ψ(m,r).ψ(m’,r’) = ψ(m+m’,r.r’)


IND-CPA secure under DCR


Unlinkability: ReRand(c) = c.Enc(0)


Multiplication by plain-text: a * Enc(m) = ( ψ(m,r) )a = ψ(am,ra) 

in Zn2*

Paillier’s Scheme

in Zn

n = pq for primes p, q, 
within 2× of each other



Private Information Retrieval

Setting: A server holds a large vector of values (“database”). 
Client wants to retrieve the value at a particular index i


Client wants privacy against an honest-but-curious server


Server has no security requirements


Trivial solution: Server sends the entire vector to the client


PIR: to do it with significantly less communication


Variant (not today): multiple-server PIR, with non-colluding 
servers



Private Information Retrieval

Single-server PIR using additive homomorphic encryption (need 
not be unlinkable)


Client sends some encrypted representation of the index 
(need CPA security here)


Server operates on the entire database using this 
encryption (homomorphically), so that the message in the 
resulting encrypted data has the relevant answer (and 
maybe more). It sends this (short) encrypted data to client, 
who decrypts to get answer.



In the following: database values are integers in [0,m), and we 
can use any homomorphic encryption scheme with a message 
space isomorphic with Zn with n ≥ m 


e.g., Paillier encryption with message space Zn (n ≥ m) 

 
 
 

For integer a and ciphertext c, can define a*c recursively: 
0*c = E(0); 1*c = c; (a+b)*c = a*c [+] b*c.

Private Information Retrieval
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Server communication 
is very short. But 

client communication 
is larger than the db!
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Considering 
ciphertext 
as plaintext 

for the 
sub-PIR

Can chop  
ciphertexts 
into smaller 

blocks

Recurse?
Exponential 
in recursion 

depth
Use PIR 
again!



Private Information Retrieval
Can dramatically improve efficiency if we have an efficient 
“recursive” homomorphic encryption scheme where:


Ciphertext in one level is plaintext in the next level


In Paillier, public-key (i.e., n) fixes the group for 
homomorphic operation (i.e., Zn)


Ciphertext size increases only “additively” from level to level


In Paillier, size of ciphertext about double that of the 
plaintext.


Such a scheme: Damgård-Jurik cryptosystem



Damgård-Jurik Scheme
Uses Zn(s+1)* ≃ Zns x Zn*, n=pq as in Paillier Encryption


Isomorphism: ψs(a,b) = gabns where g=(1+n)


ψs can still be efficiently inverted if p,q known (but more involved)


Recall Decisional Composite Residuosity assumption: Given n=pq 
(but not p,q), ψ1(0,rand) looks like ψ1(rand,rand)


Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*


Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψs(m,r).ψs(m’,r’) = ψs(m+m’,r.r’)


Recursive encryption: Output (ciphertext) of ψs (Zn(s+1)*) is an input 

(plaintext) for ψs+1 (Zn(s+1)) for the same public-key n.  

Note: s log n bits encrypted to (s+1)log n bits.

IND-CPA secure under DCR (same as for Paillier)

Unlinkability and multiplication by plaintext as in Paillier

in 

Zn(s+1)*

in Zns



Final PIR protocol
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Size of ciphertext at depth 
d is O(d log m) where m is 
the range of values in DB


Assuming log m ≥ 
security parameter


Total communication from 
client = O(log2N log m), 
where N is the number of 
entries in the DB


Total communication from 
server = O(log N log m)
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