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Homomorphic Encryption

Group Homomorphism: Two groups G and G’ are homomorphic 
if there exists a function (homomorphism) f:G→G’ such that 
for all x,y ∈ G,  f(x) +G’ f(y)  = f(x +G y) 


Homomorphic Encryption: A CPA secure (public-key) encryption 
s.t.  Dec(C) +M Dec(D)  = Dec (C +C D) for ciphertexts C, D 


i.e. Enc(x) +C Enc(y) is like Enc(x +M y)


Interesting when +C doesn’t require the decryption key


e.g., El Gamal: (gx1,m1Yx1) × (gx2,m2Yx2) = (gx3,m1m2Yx3)


e.g., Paillier: gm1r1n × gm2r2n = gm1+m2r3n
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Homomorphic Encryption
Ring Homomorphism: Two rings A and A’ are homomorphic if 
there exists a function (homomorphism) f:A→A’ s.t. ∀x,y ∈ A,  
f(x) +A’ f(y)  = f(x +A y) and f(x) ×A’ f(y)  = f(x ×A y)


Fully Homomorphic Encryption: A CPA secure (public-key) 
encryption s.t. Enc(x) +C Enc(y) is like Enc(x +M y) and  
Enc(x) ×C Enc(y) is like Enc(x ×M y)


Candidate solutions since 2009 using “lattice” problems


Today: a simpler kind of encryption, which supports only 
one multiplication (and any number of additions before and 
after the multiplication)


Uses “bilinear pairings”



Bilinear Pairing
Two (or three) groups with an efficient pairing operation,      
e: G × G → GT that is “bilinear”


Typically, prime order (cyclic) groups


e(ga,gb) = e(g,g)ab


Multiplication (once) in the exponent! 


e(ga,gb) e(ga’,gb) = e(ga+a’,gb) ;  e(ga,gbc) = e(gac,gb) ; ...


Not degenerate: e(g,g,) ≠ 1


Decisional Bilinear Diffie-Hellman (DBDH) Assumption:  
For random (a,b,c,z), the distributions of (ga,gb,gc,gabc) and 
(ga,gb,gc,gz) are indistinguishable



3-Party Key Exchange
A single round 3-party key-exchange protocol secure 
against passive eavesdroppers (under D-BDH assumption)


Generalizes Diffie-Hellman key-exchange


Let e: G × G → GT be bilinear and g a generator of G


Alice broadcasts ga, Bob broadcasts gb, and Carol 
broadcasts gc


Each party computes e(g,g)abc


e.g. Alice computes e(g,g)abc = e(gb,gc)a


By D-BDH the key e(g,g)abc = e(g,gabc) is pseudorandom 
given eavesdropper’s view (ga,gb,gc)



A key-server (with a master secret-key MSK and a master 
public-key MPK) that can generate (PK,SK) = (ID,SKID) for any 
given ID (“fancy public-key”)


Encryption will use MPK, and the receiver’s ID


Receiver has to obtain SKID from the authority

Identity-Based Encryption



IBE from Pairing

MPK: g,h, Y=e(g,h)y, π = (u,u1,...,un)


MSK: hy


Enc(m;s) = ( gr, π(ID)r, M.Yr)


SK for ID: ( gt, hy.π(ID)t) = (d1, d2)


Dec ( a, b, c; d1, d2 ) = c/ [ e(a,d2) / e(b,d1) ]


CPA security based on Decisional-BDH 

π(ID) = u  Π ui
i:IDi=1



Some More Assumptions
Computational-BDH Assumption: For random (a,b,c), given (ga,gb,gc) 
infeasible to find gabc


Decision-Linear Assumption: (h1,h2,g,h1x,h2y,gx+y) and (h1,h2,g,h1x,h2y,gz) 
are indistinguishable


Strong DH Assumption: For random x, given (g,gx) infeasible to find 
g1/x or even (y,g1/(x+y)). (Note: can check e(gxgy, g1/(x+y)) = e(g,g).)


q-SDH: Given (g,gx,...,gxq), infeasible to find (y,g1/(x+y))


Subgroup-Decision Assumption: Indistinguishability of random 
elements in G from those in a large subgroup of G (requires G to 
have composite order)


XDDH when e:G1xG2→GT: DDH in G1 and/or G2 (note: requires G1≠G2)



BGN Encryption
Boneh-Goh-Nissim Encryption scheme


Supports one multiplication and any number of additions through 
a layer of encryption


Based on the Subgroup-Decision Assumption


e: G × G → GT where G is a cyclic group with a large non-trivial 
subgroup


|G| = pq, a product of two (similar-sized) primes


H ⊆ G generated by h=gq, where g generates G, has |H|=p


Assumption: A random element in H is indistinguishable from a 
random element in G (cf. DCR)



BGN Encryption
e: G × G → GT where G is a cyclic group with |G|=pq, and 
Subgroup-Decision assumption holds for H ⊆ G, |H|=p (i.e., H=⟨gq⟩)


Message space = Ring of integers modulo n


But efficient decryption will be provided only for a small subset 
of messages


In fact, correct decryption will be possible only up to G/H (i.e., 
m ∈ {0,..,q-1}) even inefficiently


Idea: Encg,h(m;r) = gmhr, where g generates G and h=gq generates H, 
so that encrypted messages can be added by multiplying 
ciphertexts, multiplied by plaintext by exponentiating, and 
multiplied together by pairing ciphertexts


e(gm+qr,gm’+qr’) = gT
mm’ + qr’’ where gT = e(g,g) generates GT



BGN Encryption
Key generation: Sample n = pq, G s.t. |G|=n, and generator g for H. 
Public key includes (G,g,h) and secret-key is (G,g,p).

Encg,h(m;r) = gmhr, where g generates G and h=gq generates H

Decg,p(c) : Find m s.t. gmp = cp (by brute force, when m is from a 
small set)


cp = gmphrp = gmp since hp = gn = 1


Homomorphic operations (in group G):  
c1 +C c2 = c1⋅c2, a*c = ca and c1 ×C c2 = e(c1,c2). rerand(c) = c⋅hr.  


But ×C results in a ciphertext in GT! Decryption, homomorphic 
addition and multiplication by plaintext (but not multiplication of 
two encrypted values), rerand defined for these ciphertexts too


CPA secure under Subgroup-Decision assumption on G and H (which 
implies the same for GT and HT): Encryption using a random element 
in G instead of hr (random element in H) has no information about 
message.

Quadratic speedup using “Pollard’s 
Kangaroo method” for discrete log



2-DNF Computation using 
BGN Encryption

Consider a passive-secure 2-party computation problem where Bob 
has an input bit-vector x and Alice has a secret “2-DNF formula” f. 
Bob should get f(x) only, and Alice should learn nothing.


Disjunctive Normal Form: OR (disjunction) of ANDs


2-DNF: ∨i=1 to n (yi ∧ zi) where yi, zi are literals (input variables or 

their negations)


Passive-secure protocol:


Bob generates keys for BGN encryption, encrypts each bit using 
it, and sends the PK and ciphertexts to Alice


Alice homomorphically computes c←Enc(r⋅f’(x)) where f’ is a 
degree-2 polynomial version of f, using + for ∨ and × for ∧ and 
(1-x) for ¬x, and r random. Bob can (only) check if f’(x)=0 or not.

Full-fledged decryption not 
needed in the protocol



2-DNF Computation using 
BGN Encryption

In some applications, want to protect against encryption of illegal 
values


Suppose we require m ∈ {0,1}. But BGN allows m ∈ {0,…,q-1}.


Can protect against revealing information by blinding encrypted 
outputs


Instead of returning a ciphertext c, return c +c Enc(α), where 
α=0 if all given values are valid, and random otherwise


α = Σi=1 to n  ri⋅xi⋅(1-xi)


In BGN, Enc(α) (in GT) can be computed from { Enc(xi) } i (in G)



Beyond One Multiplication?
Instead of bilinear maps, if n-linear maps are available, can support 
up to degree n polynomials


Open problem to construct good candidates for multi-linear maps


Fully Homomorphic Encryption: No a priori bound on the degree of 
the polynomials that can be homomorphically evaluated. Polynomial 
may be specified as an arithmetic circuit


Levelled Homomorphic Encryption


Homomorphic encryption supporting any polynomial a priori 
upper bound on the (mult.) depth of the circuit to be evaluated


Ciphertexts of different levels, based on number of mult. used


Somewhat Homomorphic Encryption: Works only for some functions 
(e.g., log-depth circuits)


