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Homomorphic Encryption

® Group Homomorphism: Two groups G and G’ are homomorphic
if there exists a function (homomorphism) f:G—G’ such that
for all x,y € G, f(x) +¢ f(y) = f(X +c V)

® Homomorphic Encryption: A CPA secure (public-key) encryption
s.t. Dec(C) +m Dec(D) = Dec (C +¢ D) for ciphertexts C, D

® i.e. Enc(x) +c Enc(y) is like Enc(x +m VY)
® Interesting when +¢ doesnt require the decryption key
® e.g., El Gamal: (gx,miY*1) x (gx2,maY*2) = (g*3,mm2Yx3)

o e.g., Paillier: ‘gmiri xXSgmagsih=sgmitmayss



Homomorphic Encryption

® Ring Homomorphism: Two rings A and A are homomorphic if
there exists a function (homomorphism) f:A—A s.t. vx,y € A,

f(x) +a fly) = f(x +a y) and f(x) xa fly) = f(x xa Vy)

@ Fully Homomorphic Encryption: A CPA secure (public-key)
encryption s.t. Enc(x) +c Enc(y) is like Enc(x +m Yy) and
Enc(x) xc Enc(y) is like Enc(x xm V)

@ Candidate solutions since 2009 using "lattice” problems

@ Today: a simpler kind of encryption, which supports only
one multiplication (and any number of additions before and
after the multiplication)

@ Uses "bilinear pairings”



Bilinear Pairing

@ Two (or three) groups with an efficient pairing operation,
e: G x G — Gy that is “bilinear”

@ Typically, prime order (cyclic) groups
o e(gs,gb) = e(g.g)e®
@ Multiplication (once) in the exponent!
o e(ge,gb) e(ge,gb) = elge+a,gb) ; elge,gbe) = elgec,gb) ; ..
@ Not degenerate: e(g,g,) # 1
@ Decisional Bilinear Diffie-Hellman (DBDH) Assumption:

For random (a,b,c,z), the distributions of (g¢,gb,gc,gebc) and
(g%,g°,g¢,g?) are indistinguishable




3-Party Key Exchange

@ A single round 3-party key-exchange profocol secure
against passive eavesdroppers (under D-BDH assumption)

@ Generalizes Diffie-Hellman key-exchange
@ Let e: G x G — Gt be bilinear and g a generator of G

@ Alice broadcasts g¢, Bob broadcasts gb, and Carol
broadcasts g¢

@ Each party computes e(g,g)abe
@ e.g. Alice computes e(g,g)ec = e(gb,gc)e

@ By D-BDH the key e(g,g)ebc = e(g,gebc) is pseudorandom
given eavesdroppers view (g¢,g°,g¢)



Identity-Based Encryption

@ A key-server (with a master secret-key MSK and a master
public-key MPK) that can generate (PK,SK) = (ID,SKip) for any
given ID (“fancy public-key”)

@ Encryption will use MPK, and the receivers ID
@ Receiver has to obtain SKip from the authority



IBE from Pairing

@ MPK: g,h, Y=e(g,h)7, ™ = (u,uy,...,un)

ﬂ(ID) =u II y
a@ MSK: hY i:ID;=1
@ Enc(m;s) = ( g7, m(ID)r, M.Yr)
@ SK for ID: ( g, hv.m(ID)) = (di, d2)
@ Dec (a, b c;d,d2)=c/[eladz) / elbd) ]

@ CPA security based on Decisional-BDH



Some More Assumptions

Computational-BDH Assumption: For random (a,b,c), given (ge,g°,q¢)
infeasible to find gabe

Decision-Linear Assumption: (hi,hz,g,hi*,hz27,gxtv) and (hi,h2,g,hi%,h2Y,g?)
are indistinguishable

Strong DH Assumption: For random x, given (g,g*) infeasible to find
g!/x or even (y,g/*+). (Note: can check e(gxgY, g/x+)) = e(g,g).)

@ g-SDH: Given (g,g%,..,g%"), infeasible to find (y,g/x+))

Subgroup-Decision Assumption: Indistinguishability of random
elements in G from those in a large subgroup of G (requires G to
have composite order)

XDDH when e:GixG>—Gr: DDH in G; and/or G (note: requires G:#G.)



BGN Encryption

@ Boneh-Goh-Nissim Encryption scheme

@ Supports one multiplication and any number of additions through
a layer of encryption

@ Based on the Subgroup-Decision Assumption

@ e: G xG — Gt where G is a cyclic group with a large non-trivial
subgroup

@ |G| = pq, a product of two (similar-sized) primes
@ H C G generated by h=gd, where g generates G, has |H|=p

@ Assumption: A random element in H is indistinguishable from a
random element in G (cf. DCR)



BGN Encryption

@ e: G xG — Gr where G is a cyclic group with |Gl=pq, and
Subgroup-Decision assumption holds for H € G, |H|=p (i.e., H=(g%)

® Message space = Ring of integers modulo n

@ But efficient decryption will be provided only for a small subset
of messages

@ In fact, correct decryption will be possible only up to G/H (i.e.,
m € {0,..,9-1}) even inefficiently

@ Idea: Encgn(m;r) = gmhr, where g generates G and h=gd generates H,
so that encrypted messages can be added by multiplying
ciphertexts, mulfiplied by plaintext by exponentiating, and
multiplied fogether by pairing ciphertexts

o e(gm+ar,gm'+ar) = g,mm +a” where g; = e(g,g) generates Gr
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BGN Encryption

Key generation: Sample n = pq, G s.t. IG|=n, and generator g for H.
Public key includes (G,g,h) and secret-key is (G,g,p).

Encgn(m;r) = grhr, where g generates G and h=gd generates H
Decgp(c) : Find m s.t. gmp = cP (by brute force, when m is from a
small set) ]

@ cP= g"hP = gMP since hp = gn =1 Quadratic speedup using “Pollard's
Kangaroo method” for discrete log

Homomorphic operations (in group G):

C1 +¢c C2 = C1-C2, @*C = ¢2 and ¢1 X¢ €2 = e(cy,c2). rerand(c) = c-hr.

@ Butf xcresults in a ciphertext in Gy! Decryption, homomorphic
addition and multiplication by plaintext (but not multiplication of
two encrypted values), rerand defined for these ciphertexts too

CPA secure under Subgroup-Decision assumption on G and H (which
implies the same for Gr and Hr): Encryption using a random element
in G instead of hr (random element in H) has no information about
message.



2-DNF Computation using
BGN Encryption

@ Consider a passive-secure 2-party computation problem where Bob
has an input bit-vector x and Alice has a secret "2-DNF formula” f.
Bob should get f(x) only, and Alice should learn nothing.

@ Disjunctive Normal Form: OR (disjunction) of ANDs
® 2-DNF: Vi ton (Yi A Zi) where Vi, z;i are literals (input variables or

their negations) Full-fledged decryption not
needed in the protocol

@ Passive-secure protocol:

@ Bob generates keys for BGN encryption, encryjjts each bit using
it, and sends the PK and ciphertexts to Alice

@ Alice homomorphically computes c<Enc(r-f'(x))|where f' is a
degree-2 polynomial version of f, using + for v|and x for A and
(1-x) for -x, and r random. Bob can (only) check if f'(x)=0 or not.




2-DNF Computation using
BGN Encryption

@ In some applications, want to protect against encryption of illegal
values

@ Suppose we require m € 10,1}. But BGN allows m € {0,...,q-1}.

@ Can protect against revealing information by blinding encrypted
outputs

@ Instead of returning a ciphertext c, return ¢ +c Enc(«), where
«=0 if all given values are valid, and random otherwise

@ o = izl ton ri'Xi'(l-Xi)

@ In BGN, Enc(x) (in Gt) can be computed from { Enc(xi) }i (in G)



Beyond One Multiplication?

@ Instead of bilinear maps, if n-linear maps are available, can support
up to degree n polynomials

@ Open problem to construct good candidates for multi-linear maps

@ Fully Homomorphic Encryption: No a priori bound on the degree of
the polynomials that can be homomorphically evaluated. Polynomial
may be specified as an arithmetic circuit

@ Levelled Homomorphic Encryption

@ Homomorphic encryption supporting any polynomial a priori
upper bound on the (mult.) depth of the circuit to be evaluated

@ Ciphertexts of different levels, based on number of multf. used

@ Somewhat Homomorphic Encryption: Works only for some functions
(e.g., log-depth circuits)



