
Encryption Beyond
Group Homomorphism:

Bilinear Groups
Lecture 18

Homomorphic Encryption

Group Homomorphism: Two groups G and G’ are homomorphic
if there exists a function (homomorphism) f:G→G’ such that
for all x,y ∈ G, f(x) +G’ f(y) = f(x +G y)

Homomorphic Encryption: A CPA secure (public-key) encryption
s.t. Dec(C) +M Dec(D) = Dec (C +C D) for ciphertexts C, D

i.e. Enc(x) +C Enc(y) is like Enc(x +M y)

Interesting when +C doesn’t require the decryption key

e.g., El Gamal: (gx1,m1Yx1) × (gx2,m2Yx2) = (gx3,m1m2Yx3)

e.g., Paillier: gm1r1n × gm2r2n = gm1+m2r3n

Re
ca
ll

Homomorphic Encryption
Ring Homomorphism: Two rings A and A’ are homomorphic if
there exists a function (homomorphism) f:A→A’ s.t. ∀x,y ∈ A,
f(x) +A’ f(y) = f(x +A y) and f(x) ×A’ f(y) = f(x ×A y)

Fully Homomorphic Encryption: A CPA secure (public-key)
encryption s.t. Enc(x) +C Enc(y) is like Enc(x +M y) and
Enc(x) ×C Enc(y) is like Enc(x ×M y)

Candidate solutions since 2009 using “lattice” problems

Today: a simpler kind of encryption, which supports only
one multiplication (and any number of additions before and
after the multiplication)

Uses “bilinear pairings”

Bilinear Pairing
Two (or three) groups with an efficient pairing operation,
e: G × G → GT that is “bilinear”

Typically, prime order (cyclic) groups

e(ga,gb) = e(g,g)ab

Multiplication (once) in the exponent!

e(ga,gb) e(ga’,gb) = e(ga+a’,gb) ; e(ga,gbc) = e(gac,gb) ; ...

Not degenerate: e(g,g,) ≠ 1

Decisional Bilinear Diffie-Hellman (DBDH) Assumption:
For random (a,b,c,z), the distributions of (ga,gb,gc,gabc) and
(ga,gb,gc,gz) are indistinguishable

3-Party Key Exchange
A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

Let e: G × G → GT be bilinear and g a generator of G

Alice broadcasts ga, Bob broadcasts gb, and Carol
broadcasts gc

Each party computes e(g,g)abc

e.g. Alice computes e(g,g)abc = e(gb,gc)a

By D-BDH the key e(g,g)abc = e(g,gabc) is pseudorandom
given eavesdropper’s view (ga,gb,gc)

A key-server (with a master secret-key MSK and a master
public-key MPK) that can generate (PK,SK) = (ID,SKID) for any
given ID (“fancy public-key”)

Encryption will use MPK, and the receiver’s ID

Receiver has to obtain SKID from the authority

Identity-Based Encryption

IBE from Pairing

MPK: g,h, Y=e(g,h)y, π = (u,u1,...,un)

MSK: hy

Enc(m;s) = (gr, π(ID)r, M.Yr)

SK for ID: (gt, hy.π(ID)t) = (d1, d2)

Dec (a, b, c; d1, d2) = c/ [e(a,d2) / e(b,d1)]

CPA security based on Decisional-BDH

π(ID) = u Π ui
i:IDi=1

Some More Assumptions
Computational-BDH Assumption: For random (a,b,c), given (ga,gb,gc)
infeasible to find gabc

Decision-Linear Assumption: (h1,h2,g,h1x,h2y,gx+y) and (h1,h2,g,h1x,h2y,gz)
are indistinguishable

Strong DH Assumption: For random x, given (g,gx) infeasible to find
g1/x or even (y,g1/(x+y)). (Note: can check e(gxgy, g1/(x+y)) = e(g,g).)

q-SDH: Given (g,gx,...,gxq), infeasible to find (y,g1/(x+y))

Subgroup-Decision Assumption: Indistinguishability of random
elements in G from those in a large subgroup of G (requires G to
have composite order)

XDDH when e:G1xG2→GT: DDH in G1 and/or G2 (note: requires G1≠G2)

BGN Encryption
Boneh-Goh-Nissim Encryption scheme

Supports one multiplication and any number of additions through
a layer of encryption

Based on the Subgroup-Decision Assumption

e: G × G → GT where G is a cyclic group with a large non-trivial
subgroup

|G| = pq, a product of two (similar-sized) primes

H ⊆ G generated by h=gq, where g generates G, has |H|=p

Assumption: A random element in H is indistinguishable from a
random element in G (cf. DCR)

BGN Encryption
e: G × G → GT where G is a cyclic group with |G|=pq, and
Subgroup-Decision assumption holds for H ⊆ G, |H|=p (i.e., H=⟨gq⟩)

Message space = Ring of integers modulo n

But efficient decryption will be provided only for a small subset
of messages

In fact, correct decryption will be possible only up to G/H (i.e.,
m ∈ {0,..,q-1}) even inefficiently

Idea: Encg,h(m;r) = gmhr, where g generates G and h=gq generates H,
so that encrypted messages can be added by multiplying
ciphertexts, multiplied by plaintext by exponentiating, and
multiplied together by pairing ciphertexts

e(gm+qr,gm’+qr’) = gT
mm’ + qr’’ where gT = e(g,g) generates GT

BGN Encryption
Key generation: Sample n = pq, G s.t. |G|=n, and generator g for H.
Public key includes (G,g,h) and secret-key is (G,g,p).

Encg,h(m;r) = gmhr, where g generates G and h=gq generates H

Decg,p(c) : Find m s.t. gmp = cp (by brute force, when m is from a
small set)

cp = gmphrp = gmp since hp = gn = 1

Homomorphic operations (in group G):
c1 +C c2 = c1⋅c2, a*c = ca and c1 ×C c2 = e(c1,c2). rerand(c) = c⋅hr.

But ×C results in a ciphertext in GT! Decryption, homomorphic
addition and multiplication by plaintext (but not multiplication of
two encrypted values), rerand defined for these ciphertexts too

CPA secure under Subgroup-Decision assumption on G and H (which
implies the same for GT and HT): Encryption using a random element
in G instead of hr (random element in H) has no information about
message.

Quadratic speedup using “Pollard’s
Kangaroo method” for discrete log

2-DNF Computation using
BGN Encryption

Consider a passive-secure 2-party computation problem where Bob
has an input bit-vector x and Alice has a secret “2-DNF formula” f.
Bob should get f(x) only, and Alice should learn nothing.

Disjunctive Normal Form: OR (disjunction) of ANDs

2-DNF: ∨i=1 to n (yi ∧ zi) where yi, zi are literals (input variables or

their negations)

Passive-secure protocol:

Bob generates keys for BGN encryption, encrypts each bit using
it, and sends the PK and ciphertexts to Alice

Alice homomorphically computes c←Enc(r⋅f’(x)) where f’ is a
degree-2 polynomial version of f, using + for ∨ and × for ∧ and
(1-x) for ¬x, and r random. Bob can (only) check if f’(x)=0 or not.

Full-fledged decryption not
needed in the protocol

2-DNF Computation using
BGN Encryption

In some applications, want to protect against encryption of illegal
values

Suppose we require m ∈ {0,1}. But BGN allows m ∈ {0,…,q-1}.

Can protect against revealing information by blinding encrypted
outputs

Instead of returning a ciphertext c, return c +c Enc(α), where
α=0 if all given values are valid, and random otherwise

α = Σi=1 to n ri⋅xi⋅(1-xi)

In BGN, Enc(α) (in GT) can be computed from { Enc(xi) } i (in G)

Beyond One Multiplication?
Instead of bilinear maps, if n-linear maps are available, can support
up to degree n polynomials

Open problem to construct good candidates for multi-linear maps

Fully Homomorphic Encryption: No a priori bound on the degree of
the polynomials that can be homomorphically evaluated. Polynomial
may be specified as an arithmetic circuit

Levelled Homomorphic Encryption

Homomorphic encryption supporting any polynomial a priori
upper bound on the (mult.) depth of the circuit to be evaluated

Ciphertexts of different levels, based on number of mult. used

Somewhat Homomorphic Encryption: Works only for some functions
(e.g., log-depth circuits)

