Encryption Beyond Group Homomorphism: Bilinear Groups

Lecture 18

Homomorphic Encryption

- Group Homomorphism: Two groups G and G' are homomorphic if there exists a function (homomorphism) $f:G \rightarrow G'$ such that for all $x,y \in G$, $f(x) +_{G'} f(y) = f(x +_G y)$
- Homomorphic Encryption: A CPA secure (public-key) encryption s.t. $Dec(C) +_M Dec(D) = Dec(C +_C D)$ for ciphertexts C, D

• i.e. $Enc(x) +_{C} Enc(y)$ is like $Enc(x +_{M} y)$

• Interesting when $+_c$ doesn't require the decryption key

• e.g., El Gamal: $(g^{\times 1}, m_1 Y^{\times 1}) \times (g^{\times 2}, m_2 Y^{\times 2}) = (g^{\times 3}, m_1 m_2 Y^{\times 3})$

• e.g., Paillier: $g^{m_1}r_1^n \times g^{m_2}r_2^n = g^{m_1+m_2}r_3^n$

Homomorphic Encryption

- Ring Homomorphism: Two rings A and A' are homomorphic if there exists a function (homomorphism) f:A→A' s.t. ∀x,y ∈ A, f(x) +A' f(y) = f(x +A y) and f(x) ×A' f(y) = f(x ×A y)
- Fully Homomorphic Encryption: A CPA secure (public-key) encryption s.t. Enc(x) +_c Enc(y) is like Enc(x +_M y) and Enc(x) ×_c Enc(y) is like Enc(x ×_M y)
 - Candidate solutions since 2009 using "lattice" problems
 - Today: a simpler kind of encryption, which supports only one multiplication (and any number of additions before and after the multiplication)
 - Uses "bilinear pairings"

Bilinear Pairing

Two (or three) groups with an efficient pairing operation,
 e: G × G → G_T that is "bilinear"

Typically, prime order (cyclic) groups

 $e(g^a, g^b) = e(g, g)^{ab}$

Multiplication (once) in the exponent!

 $e(g^a, g^b) e(g^{a'}, g^b) = e(g^{a+a'}, g^b);
 e(g^a, g^{bc}) = e(g^{ac}, g^b);
 \dots$

Not degenerate: e(g,g,) ≠ 1

Decisional Bilinear Diffie-Hellman (DBDH) Assumption:
 For random (a,b,c,z), the distributions of (g^a,g^b,g^c,g^{abc}) and (g^a,g^b,g^c,g^z) are indistinguishable

3-Party Key Exchange

 A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

• Let e: $G \times G \rightarrow G_T$ be bilinear and g a generator of G

- Alice broadcasts g^a, Bob broadcasts g^b, and Carol broadcasts g^c
- Each party computes e(g,g)^{abc}
 - e.g. Alice computes $e(g,g)^{abc} = e(g^b,g^c)^a$
 - By D-BDH the key e(g,g)^{abc} = e(g,g^{abc}) is pseudorandom given eavesdropper's view (g^a,g^b,g^c)

Identity-Based Encryption

A key-server (with a master secret-key MSK and a master public-key MPK) that can generate (PK,SK) = (ID,SK_{ID}) for any given ID ("fancy public-key")

Encryption will use MPK, and the receiver's ID

Receiver has to obtain SKID from the authority

IBE from Pairing

• MPK: g,h, Y=e(g,h)^y, $\pi = (u,u_1,...,u_n)$ $\pi(ID) = u \prod u_i$ MSK: h^y Second Enc(m;s) = (g^r , $\pi(ID)^r$, M.Y^r) • SK for ID: $(q^{\dagger}, h^{y}.\pi(ID)^{\dagger}) = (d_{1}, d_{2})$ OPA security based on Decisional-BDH

Some More Assumptions

- Computational-BDH Assumption: For random (a,b,c), given (g^a,g^b,g^c) infeasible to find g^{abc}
- Decision-Linear Assumption: (h₁,h₂,g,h₁×,h₂^y,g^{×+y}) and (h₁,h₂,g,h₁×,h₂^y,g^z) are indistinguishable
- Strong DH Assumption: For random x, given (g,g^x) infeasible to <u>find</u> g^{1/x} or even (y,g^{1/(x+y)}). (Note: can <u>check</u> e(g^xg^y, g^{1/(x+y)}) = e(g,g).)

q-SDH: Given (g,g[×],...,g^{×^q}), infeasible to find (y,g^{1/(x+y)})

- Subgroup-Decision Assumption: Indistinguishability of random elements in G from those in a large subgroup of G (requires G to have composite order)

BGN Encryption

Boneh-Goh-Nissim Encryption scheme

Supports one multiplication and any number of additions through a layer of encryption

- Based on the Subgroup-Decision Assumption
- - G |G| = pq, a product of two (similar-sized) primes
 - → H ⊆ G generated by h=g^q, where g generates G, has |H|=p
 - Assumption: A random element in H is indistinguishable from a random element in G (cf. DCR)

BGN Encryption

- e: G × G → G_T where G is a cyclic group with |G|=pq, and Subgroup-Decision assumption holds for H ⊆ G, |H|=p (i.e., $H=\langle g^q \rangle$)
- Message space = Ring of integers modulo n
 - But efficient decryption will be provided only for a small subset of messages
 - In fact, correct decryption will be possible only up to G/H (i.e., m ∈ {0,..,q-1}) even inefficiently
- Idea: Enc_{g,h}(m;r) = g^mh^r, where g generates G and h=g^q generates H, so that encrypted messages can be added by multiplying ciphertexts, multiplied by plaintext by exponentiating, and multiplied together by pairing ciphertexts

• $e(g^{m+qr}, g^{m'+qr'}) = g_T^{mm'+qr''}$ where $g_T = e(g,g)$ generates G_T

BGN Encryption

- Key generation: Sample n = pq, G s.t. |G|=n, and generator g for H. Public key includes (G,g,h) and secret-key is (G,g,p).
- $Enc_{g,h}(m;r) = g^{m}h^{r}$, where g generates G and h=g^q generates H
- Dec_{g,p}(c) : Find m s.t. g^{mp} = c^p (by brute force, when m is from a small set)

• $c_P = g^{mp}h^{rp} = g^{mp}$ since $h^p = g^n = 1$

Homomorphic operations (in group G):

Quadratic speedup using "Pollard's Kangaroo method" for discrete log

 $c_1 + c c_2 = c_1 \cdot c_2$, $a * c = c^a$ and $c_1 \times c c_2 = e(c_1, c_2)$. rerand(c) = $c \cdot h^r$.

• But x_c results in a ciphertext in G_T ! Decryption, homomorphic addition and multiplication by plaintext (but not multiplication of two encrypted values), rerand defined for these ciphertexts too

 CPA secure under Subgroup-Decision assumption on G and H (which implies the same for G_T and H_T): Encryption using a random element in G instead of h^r (random element in H) has no information about message.

2-DNF Computation using BGN Encryption

- Consider a passive-secure 2-party computation problem where Bob has an input bit-vector x and Alice has a secret "2-DNF formula" f.
 Bob should get f(x) only, and Alice should learn nothing.
 - Disjunctive Normal Form: OR (disjunction) of ANDs
 - 2-DNF: V_{i=1 to n} (y_i ∧ z_i) where y_i, z_i are literals (input variables or their negations)
 Full-fledged decryption not
 - Passive-secure protocol:

^zull-fledged decryption not needed in the protocol

- Bob generates keys for BGN encryption, encrypts each bit using it, and sends the PK and ciphertexts to Alice
- Alice homomorphically computes c←Enc(r·f'(x)) where f' is a degree-2 polynomial version of f, using + for ∨ and × for ∧ and (1-x) for ¬x, and r random. Bob can (only) check if f'(x)=0 or not.

2-DNF Computation using BGN Encryption

- In some applications, want to protect against encryption of illegal values
- Suppose we require $m \in \{0,1\}$. But BGN allows $m \in \{0,...,q-1\}$.
- Can protect against revealing information by blinding encrypted outputs
 - Instead of returning a ciphertext c, return c $+_c$ Enc(α), where $\alpha=0$ if all given values are valid, and random otherwise
 - $\alpha = \sum_{i=1 \text{ to } n} r_i \cdot x_i \cdot (1-x_i)$
 - In BGN, $Enc(\alpha)$ (in G_T) can be computed from { $Enc(x_i)$ } (in G)

Beyond One Multiplication?

 Instead of bilinear maps, if n-linear maps are available, can support up to degree n polynomials

Open problem to construct good candidates for multi-linear maps

Fully Homomorphic Encryption: No a priori bound on the degree of the polynomials that can be homomorphically evaluated. Polynomial may be specified as an arithmetic circuit

Levelled Homomorphic Encryption

Homomorphic encryption supporting any polynomial <u>a priori</u> <u>upper bound</u> on the (mult.) depth of the circuit to be evaluated

Ciphertexts of different levels, based on number of mult. used

 Somewhat Homomorphic Encryption: Works only for some functions (e.g., log-depth circuits)