Lattice Cryptography Lecture 19

Lattices

0

 \mathbf{O}

0

 \mathbf{O}

0

 \bigcirc

0

 \bigcirc

0

0

0

0

0

0

- A infinite set of points in Rⁿ obtained by tiling with a "basis"
 - Formally, { Σ_i x_ib_i | x_i integers }
- Basis is not unique
- Several problems related to highdimensional lattices are believed to be hard, with cryptographic applications
 - Hardness assumptions appear to be "milder" (worst-case hardness)
 - Believed to hold even against quantum computation:
 "Post-Quantum Cryptography"

Lattices

0

0

0

0

0

 \mathbf{O}

 \mathbf{O}

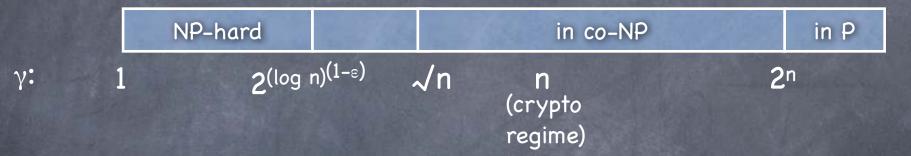
Given a basis $\{b_1, \dots, b_m\}$ in \mathbb{R}^n , lattice has points o $\{ \sum_{i} x_{i} \mathbf{b}_{i} \mid x_{i} \text{ integers } \}$ 0 or, { xB : x ∈ \mathbb{Z}^m } for B ∈ $\mathbb{R}^{m \times n}$ \mathbf{O} 0 \odot Two n-dim lattices in \mathbb{Z}^n associated with \mathbf{O} an m \times n matrix A over \mathbb{Z}_q 0 LA: Vectors "spanned" by rows of A 0 • $L_{A^{\perp}}$: Vectors "orthogonal" to rows of A \odot Here, L_A, L_A \perp in \mathbb{Z}^n , but above operations mod q (i.e., over \mathbb{Z}_q) Dual lattice L*: { <u>v</u> | <<u>v</u>, <u>u</u> > ∈ \mathbb{Z} , ∀<u>u</u> ∈ L } e.g. (L_A)* = 1/q L_A⊥ and (L_A⊥)* = 1/q L_A

Lattices in Cryptography

- Several problems related to lattices (lattice given as a basis) are believed to be computationally hard in <u>high dimensions</u>
- Closest Vector Problem (CVP): Given a point in Rⁿ, find the point closest to it in the lattice
- Shortest Vector Problem (SVP): Find the shortest non-zero vector in the lattice
 - SVP_{γ}: find one within a factor γ of the shortest
 - GapSVP_{γ}: decide if the length of the shortest vector is < 1 or
 - $> \gamma$ (promised to be one of the two)
 - uniqueSVP_{γ}: SVP, when guaranteed that the next (nonparallel) shortest vector is longer by a factor γ or more
- Shortest Independent Vector Problem (SIVP): Find n independent vectors minimizing the longest of them
- Cryptographically important problems related to the above:
 SIS and LWE (coming up)

Lattices in Cryptography

Worst-case hardness of lattice problems (e.g. GapSVP)



Assumptions about worst-case hardness (e.g. P≠NP) are qualitatively simpler than that of average-case hardness

Crypto requires average-case hardness

For many lattice problems average-case hardness implied by worst-case hardness of related problems

Average-Case/Worst-Case

Connection

- Worst-case hardness: Hard to solve <u>every instance</u> of the problem (holds even if most instances are easy)
- Crypto typically needs average case hardness assumption: Random instance of a problem is hard to solve (broken if an algorithm can solve many instances)
- Worst-case connection: Show that solving random instances of Problem 1 is as hard as solving another (hard) problem Problem 2 in the worst case
- Connection shows that if a few instances (of the second problem) are hard, most instances (of the first problem) are
- For many lattice problems average-case hardness assumptions are implied by worst-case hardness of related problems (but at regimes not known to be NP-hard)

Ajtai's Hash Function

• CRHF: $f_A(\underline{\mathbf{x}}) = A\underline{\mathbf{x}} \pmod{q}$

x required to be a "short" vector (i.e., each co-ordinate in the range [0,d-1] for some small d)

Short Integer Solution Problem

Has a worst-case connection to lattice problems

A is an n × m matrix: maps m log d bits to n log q bits (for compression we require m > n log_dq)

Collision yields a short vector (co-ordinates in [-(d-1),d-1]) \underline{z} s.t $A\underline{z}$ = 0 (mod q): i.e., a short vector in the lattice $L_{A^{\perp}}$

Simple to compute: if d small (say, d=2, i.e., x binary), f_A(x) can be computed using O(n m) additions mod q

Ajtai's Hash Function More Properties

→ $f_A(\underline{x}) = A\underline{x}$ (mod q) where $A \in \mathbb{Z}_q^{n \times m}$ and $\underline{x} \in [0, d-1]^m$ (m > n log_dq)

A CRHF if SIS is hard for random A

- If sufficiently compressing (say by half), a CRHF is also a OWF
 [Exercise]
- Is a 2-universal hash function (restricting the domain to $\underline{x} \neq \underline{0}$). • for every \underline{x} , $f_{\underline{A}}(\underline{x})$ is uniform • for every $\underline{x} \neq \underline{x}'$, $f_{\underline{A}}(\underline{x})$ independent of $f_{\underline{A}}(\underline{x}')$ • random

Is message and key homomorphic:

• $f_A(\underline{x}) + f_A(\underline{y}) = f_A(\underline{x}+\underline{y})$ (but $\underline{x}+\underline{y} \in [0,2(d-1)]^m$)

Succinct Keys

Solution Ajtai's hash function is described by an n x m matrix over \mathbb{Z}_q , where n is the security parameter and m > n

Large key and correspondingly large number of operations
 Using "ideal lattices" which have more structure:

A random basis for such a lattice can be represented using just m elements of \mathbb{Z}_q (instead of mn)

Matrix multiplication can be carried out faster (using FFT) with $\tilde{O}(m)$ operations over \mathbb{Z}_q (instead of O(mn))

Security depends on worst-case hardness of same problems as before, but when restricted to ideal lattices

Public-Key Encryption

NTRU approach: Private key is a "good" basis, and the public key is a "bad basis"

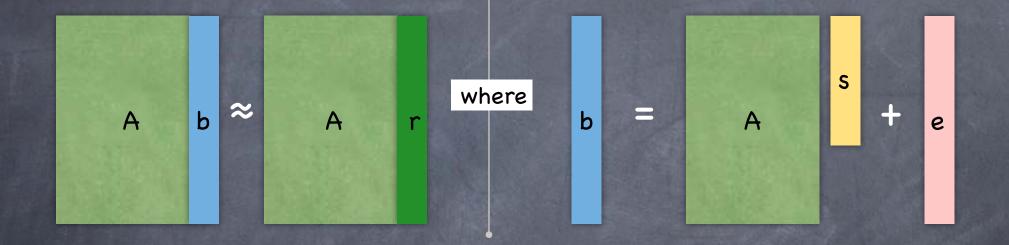
 Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis

- To encrypt a message, encode it (randomized) as a short "noise vector" u. Output c = v+u for a lattice point v that is chosen using the public basis
 - To decrypt, use the good basis to find v as the closest lattice vector to c, and recover u=c-v
- Use lattices with succinct basis (defined over the ring of degree N TRUncated polynomials)
- Conjectured to be CPA secure for appropriate lattices. No security reduction known to simple lattice problems

LWE (computational version): given noisy inner-products of random vectors with a hidden vector, <u>find</u> the hidden vector

Given <<u>a1</u>,<u>s</u>>+e1, ..., <<u>am</u>,<u>s</u>>+em and <u>a1</u>,....,<u>am</u>, find <u>s</u>.
 All operations in ℤ_q. <u>ai</u> uniform, ei small noise (from a discrete Gaussian distribution)

- Matrix form (fixed m): Given (A<u>s</u>+<u>e</u>, A) find <u>s</u> where $A \in \mathbb{Z}_q^{m \times n}$
- Decision version: distinguish such an input from a random input
- Assumed to be hard (note: average-case hardness). Has been connected with worst-case hardness of GapSVP
- Ring LWE (Succinct version): $\langle \underline{a}_i, \underline{s} \rangle + e_i$ replaced with $a_i \cdot s + e_i$, where all elements belong to an appropriate ring. Known to be as hard as SVP_y for ideal lattices.



• LWE (decision version, matrix form): $(A,A\underline{s}+\underline{e}) \approx (A,\underline{r})$, where $A \leftarrow \mathbb{Z}_q^{m \times n}$, $\underline{s} \leftarrow \mathbb{Z}_q^n$, \underline{e} has "small" entries from a Gaussian distribution, and $\underline{r} \leftarrow \mathbb{Z}_q^m$.

 (Decision) LWE is a fairly strong assumption that subsumes some other (more traditional) lattice assumptions

• Hardness of (Decision) LWE \Rightarrow Hardness of Short Integer Solution

Given algorithm for SIS, an algorithm for Decision LWE:
i.e, given (A,b), to check if b=As+e for a short e:
Find a short solution x for A^Tx = 0. Check if ⟨x,b⟩ is small.
If b=As+e then, ⟨x,b⟩=⟨x,e⟩, which is small.
If b random, then ⟨x,b⟩ random (for non-zero x), and unlikely to be small.

A simple Worst-case/Average-case connection of (Decision) LWE

• Worst- \underline{s} hardness \Rightarrow Average- \underline{s} hardness

Note: A is still random

Given arbitrary instance (A,b), define b*= b + Ar for a random vector r. If b=As+e, then b*=As*+e, for random s*=s+r. If b random, b* random

So, run algorithm for average <u>s</u> on (A,<u>b</u>*) and output its decision

Public-Key Encryption

An LWE based approach:

- Public-key is (A,P) where P=AS+E, for random matrices (of appropriate dimensions) A and S, and a noise matrix E over \mathbb{Z}_q
- To encrypt an n bit message, first map it to a vector \underline{v} in (a sparse sub-lattice of) \mathbb{Z}_{q^n} ; pick a random vector \underline{a} with small coordinates; ciphertext is ($\underline{u},\underline{c}$) where $\underline{u} = A^T \underline{a}$ and $\underline{c} = P^T \underline{a} + \underline{v}$
- Dec(($\underline{\mathbf{u}},\underline{\mathbf{c}}$),S): recover $\underline{\mathbf{v}}$ by "rounding" $\underline{\mathbf{c}}$ S^T $\underline{\mathbf{u}}$ = $\underline{\mathbf{v}}$ + E^T $\underline{\mathbf{a}}$

Allows a small error probability; can be made negligible by first encoding the message using an error correcting code
 CPA security: By (Decision) LWE assumption, the public-key is indistinguishable from random; and, encryption under random (A,P) loses essentially all information about the message

If B=[A|P] uniform, $(B,B^{T}\underline{a})$ is statistically close to uniform

Next time

Lattice based cryptography

Candidate for post-quantum cryptography

 Security typically based on worst-case hardness of problems

Several problems: SVP and variants, LWE

Applications: Hash functions, PKE, ...

Mext: Fully Homomorphic Encryption