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Lattices
A infinite set of points in Rn obtained 

by tiling with a “basis”


Formally, { Σi xibi | xi integers }


Basis is not unique


Several problems related to high-
dimensional lattices are believed to be 
hard, with cryptographic applications


Hardness assumptions appear to be 
“milder” (worst-case hardness)


Believed to hold even against 
quantum computation:  
“Post-Quantum Cryptography”



Lattices
Given a basis {b1,...,bm} in Rn, lattice has points 

{ Σi xibi | xi integers }


Or, { xB : x ∈ Zm } for B ∈ Rm×n


Two n-dim lattices in Zn associated with 

an m × n matrix A over Zq


LA : Vectors “spanned” by rows of A


LA⊥ : Vectors “orthogonal” to rows of A


Here, LA, LA⊥ in Zn , but above operations 

mod q (i.e., over Zq)


Dual lattice L*: { v | <v,u> ∈ Z, ∀u ∈ L }


e.g. (LA)* = 1/q LA⊥  and (LA⊥)* = 1/q LA  



Lattices in Cryptography
Several problems related to lattices (lattice given as a basis) are 
believed to be computationally hard in high dimensions

Closest Vector Problem (CVP): Given a point in Rn, find the point 

closest to it in the lattice

Shortest Vector Problem (SVP): Find the shortest non-zero 
vector in the lattice


SVPγ: find one within a factor γ of the shortest

GapSVPγ: decide if the length of the shortest vector is < 1 or 
> γ (promised to be one of the two)

uniqueSVPγ: SVP, when guaranteed that the next (non-
parallel) shortest vector is longer by a factor γ or more


Shortest Independent Vector Problem (SIVP): Find n independent 
vectors minimizing the longest of them

Cryptographically important problems related to the above: 
SIS and LWE (coming up)



Lattices in Cryptography

Worst-case hardness of lattice problems (e.g. GapSVP)


Assumptions about worst-case hardness (e.g. P≠NP) are 
qualitatively simpler than that of average-case hardness


Crypto requires average-case hardness


For many lattice problems average-case hardness implied by 
worst-case hardness of related problems

NP-hard in co-NP

γ: 1 2(log n)(1-ε) √n n 2n

in P

(crypto  
regime)



Average-Case/Worst-Case 
Connection

Worst-case hardness: Hard to solve every instance of the problem 
(holds even if most instances are easy)


Crypto typically needs average case hardness assumption: Random 
instance of a problem is hard to solve (broken if an algorithm can 
solve many instances)


Worst-case connection: Show that solving random instances of 
Problem 1 is as hard as solving another (hard) problem Problem 2 in 
the worst case


Connection shows that if a few instances (of the second problem) 
are hard, most instances (of the first problem) are


For many lattice problems average-case hardness assumptions are 
implied by worst-case hardness of related problems (but at  
regimes not known to be NP-hard)



Ajtai’s Hash Function

CRHF: fA(x) = Ax  (mod q)


x required to be a “short” vector (i.e., each co-ordinate in the 
range [0,d-1] for some small d)


A is an n × m matrix: maps m log d bits to n log q bits (for 
compression we require m > n logdq)


Collision yields a short vector (co-ordinates in [-(d-1),d-1]) 

z s.t Az = 0 (mod q): i.e., a short vector in the lattice LA⊥


Simple to compute: if d small (say, d=2, i.e., x binary), fA(x) 
can be computed using O(n m) additions mod q

Short 
Integer 
Solution 
Problem

Has a 
worst-case  
connection 
to lattice 
problems



fA(x) = Ax  (mod q) where A ∈ Zq
nxm and x ∈ [0,d-1]m (m > n logdq)


A CRHF if SIS is hard for random A


If sufficiently compressing (say by half), a CRHF is also a OWF 
[Exercise]


Is a 2-universal hash function (restricting the domain to x ≠ 0).


for every x, fA(x) is uniform


for every x≠x’, fA(x) independent of fA(x’)


Is message and key homomorphic:


fA(x) + fA(y) = fA(x+y)   (but x+y ∈ [0,2(d-1)]m )


fA+A’(x) = fA(x) + fA’(x)

Ajtai’s Hash Function
More Properties

when A is 
chosen at 
random}



Succinct Keys
Ajtai’s hash function is described by an n x m matrix over Zq, 

where n is the security parameter and m > n 


Large key and correspondingly large number of operations


Using “ideal lattices” which have more structure:


A random basis for such a lattice can be represented using 
just m elements of Zq (instead of mn)


Matrix multiplication can be carried out faster (using FFT) 
with Õ(m) operations over Zq (instead of O(mn))


Security depends on worst-case hardness of same problems as 
before, but when restricted to ideal lattices 



Public-Key Encryption
NTRU approach: Private key is a “good” basis, and the public 
key is a “bad basis”


Worst basis (one that can be efficiently computed from any 
basis): Hermite Normal Form (HNF) basis


To encrypt a message, encode it (randomized) as a short 
“noise vector” u. Output c = v+u for a lattice point v that is 
chosen using the public basis


To decrypt, use the good basis to find v as the closest 
lattice vector to c, and recover u=c-v


Use lattices with succinct basis (defined over the ring of 
degree N TRUncated polynomials)


Conjectured to be CPA secure for appropriate lattices. No 
security reduction known to simple lattice problems



Learning With Errors
LWE (computational version): given noisy inner-products of 
random vectors with a hidden vector, find the hidden vector


Given <a1,s>+e1 , ..., <am,s>+em and a1,....,am, find s. 

All operations in Zq.  ai uniform, ei small noise (from a discrete 

Gaussian distribution)


Matrix form (fixed m): Given (As+e, A) find s where A ∈ Zq
m×n 


Decision version: distinguish such an input from a random input


Assumed to be hard (note: average-case hardness). Has been 
connected with worst-case hardness of GapSVP


Ring LWE (Succinct version): <ai,s>+ei replaced with ai⋅s + ei, 
where all elements belong to an appropriate ring. Known to be 
as hard as SVPγ for ideal lattices. 



Learning With Errors

LWE (decision version, matrix form): (A,As+e) ≈ (A,r),  

where A ← Zq
m×n, s ← Zq

n, e has “small” entries from a 

Gaussian distribution, and r ← Zq
m.

= +≈ A

s

eA Ab br
 where 



Learning With Errors

(Decision) LWE is a fairly strong assumption that subsumes some 
other (more traditional) lattice assumptions


Hardness of (Decision) LWE ⇒ Hardness of Short Integer Solution


Given algorithm for SIS, an algorithm for Decision LWE:  

i.e, given (A,b), to check if b=As+e for a short e:


Find a short solution x for ATx = 0. Check if ⟨x,b⟩ is small.


If b=As+e then, ⟨x,b⟩=⟨x,e⟩, which is small.  

If b random, then ⟨x,b⟩ random (for non-zero x), and 
unlikely to be small.



Learning With Errors
A simple Worst-case/Average-case connection of (Decision) LWE


Worst-s hardness ⇒ Average-s hardness


Note: A is still random


Given arbitrary instance (A,b), define b*= b + Ar for a random 

vector r. If b=As+e, then b*=As*+e, for random s*=s+r. If b 

random, b* random


So, run algorithm for average s on (A,b*) and output its 
decision



An LWE based approach:


Public-key is (A,P) where P=AS+E, for random matrices (of 
appropriate dimensions) A and S, and a noise matrix E over Zq


To encrypt an n bit message, first map it to a vector v in (a 

sparse sub-lattice of) Zqn; pick a random vector a with small 

coordinates; ciphertext is (u,c) where u = ATa and c = PTa + v


Dec((u,c),S): recover v by “rounding” c - STu = v + ETa


Allows a small error probability; can be made negligible by 
first encoding the message using an error correcting code


CPA security: By (Decision) LWE assumption, the public-key is 
indistinguishable from random; and, encryption under random 
(A,P) loses essentially all information about the message


If B=[A|P] uniform, (B,BTa) is statistically close to uniform 

Public-Key Encryption

Next 
time



Today

Lattice based cryptography


Candidate for post-quantum cryptography


Security typically based on worst-case hardness of 
problems


Several problems: SVP and variants, LWE


Applications: Hash functions, PKE, …


Next: Fully Homomorphic Encryption


