
Lattice Cryptography:
Towards Fully Homomorphic

Encryption
Lecture 20

Learning With Errors

LWE (decision version): (A,As+e) ≈ (A,r), where A random

matrix in A ∈ Zq
m×n, s uniform, e has “small” entries from a

Gaussian distribution, and r uniform.

Average-case solution for LWE ⇒ Worst-case solution for

GapSVP (for appropriate choice of parameters)

= +≈ A

s

eA Ab b

Re
ca

ll

r
 where

Learning With Errors

LWE (decision version): (A,As+e) ≈ (A,r), where A random

matrix in A ∈ Zq
m×n, s uniform, e has “small” entries from a

Gaussian distribution, and r uniform.

Average-case solution for LWE ⇒ Worst-case solution for

GapSVP (for appropriate choice of parameters)

≈ =
1

-s
A eA Ab r b

 where

Learning With Errors

i.e., a pseudorandom matrix M ∈ Zq
m×n’ and non-zero z ∈ Zq

n’

s.t. entries of Mz are all small (writing n’=n+1)

≈ =z eMM A r
 where

PKE from LWE

0
1

AT

bT

a
v

=

1-sT

1

eT

a

v

Ciphertext

Re
ca

ll

PKE from LWE

Ciphertext = MTa + m where m encodes the message and a ∈ {0,1}m

Decryptng: From zT(MTa + m) = eTa + zTm where eTa is small. To

allow decoding from this for, say μ ∈ {0,1}, note zTm = v ≈ μ(q/2).

CPA security: MTa is pseudorandom

Claim: If M∈Zq
m×n' is truly random, a∈{0,1}m\{0m}, m >> n’ log q,

 then MTa is very close to being uniform

0
1

a
=

1-sT

1

eT

a

v

Ciphertext

Re
ca

ll

MT m

zT

Entries in a are not uniformly random over Zq
m, but concentrated

on a small subset {0,1}m. We need MTa to be uniform over Zq
n’

Follows from two more generally useful facts:

HM(a) = MTa is a 2-Universal Hash Function (for non-zero a)

If H is a 2-UHF, then it is a good randomness extractor

If m >> n’ log q, the entropy of a (m bits) is significantly

more than that of a uniform vector in Zq
n’ and a good

randomness extractor will produce an almost uniform output

Randomness Extraction

Universal Hashing

x h1(x) h2(x) h3(x) h4(x)

0 0 0 1 1

1 0 1 0 1

2 1 0 0 1

Combinatorial HF: A→(x,y); h←H. h(x)=h(y) w.n.p

Even better: 2-Universal Hash Functions

“Uniform” and “Pairwise-independent”

∀x,z Prh←H	[h(x)=z] = 1/|Z| (where h:X→Z)

∀x≠y,w,z Prh←H	[h(x)=w, h(y)=z] = 1/|Z|2

⇒ ∀x≠y Prh←H	[h(x)=h(y)] = 1/|Z|

Negligible collision-probability if
super-polynomial-sized range e.g. ha,b(x) = ax+b (in a finite field, X=Z)

Pra,b [ax+b = z] = Pra,b [b = z-ax] = 1/|Z|

Pra,b [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the
two equations (for x≠y)

Pra,b [ax+b = w, ay+b = z] = 1/|Z|2

Exercise: Mx (M random matrix) is a 2-UHF for non-zero boolean x

Randomness Extractor
Input has high “min-entropy"

i.e., probability of any particular
input string is very low

Seed uniform and independent of input

Output vector is shorter than the input

Need input min-entropy > output length (1+ε)

Ext(inp,seed)) ≈ Uniform

Statistical closeness

A strong extractor: (seed, Ext(inp,seed)) ≈ (seed,Uniform)

i.e., for any input distribution with enough min-entropy,
most choices of seed yield a good deterministic extractor

ExtBiased input

Almost
unbiased
output

Seed randomness

Randomness Extractor

Leftover Hash Lemma:

Any 2-UHF is a strong extractor
that can extract almost all of
the min-entropy in the input

A very useful result

We need only a special case here:

Only for a particular 2-UHF (HM(x) = Mx)

Only for a particular input distribution (x uniform over {0,1}m)

Input min-entropy = m bits

If M ∈ Zq
m×n then need m > n log q (1+ε)

ExtBiased input

Almost
unbiased
output

Seed randomness

PKE from LWE

Ciphertext = MTa + m where m encodes the message and a ∈ {0,1}m

Decryptng: From zT(MTa + m) = eTa + zTm where eTa is small. To

allow decoding from this for, say μ ∈ {0,1}, let zTm = v ≈ μ(q/2).

CPA security: MTa is pseudorandom

Claim: If M∈Zq
m×n' is truly random, a∈{0,1}m\{0m}, m >> n’ log q,

 then MTa is very close to being uniform

0
1

a
=

1-sT

1

eT

a

v

Ciphertext

Re
ca

ll

MT m

zT

Want to allow homomorphic operations on the ciphertext

Idea: Ciphertext is a matrix masked by a pseudorandom matrix
that can be “annihilated” with secret key. Addition and multiplication
of messages given by addition and multiplication of ciphertexts.

Recall from LWE: M ∈ Zq
m×n and z ∈ Zq

n s.t. Mz has small entries

First attempt:

Public-Key = M, Secret-key = z

Enc(μ) = MTR + μI where μ∈{0,1}, R←{0,1}m×n, and In×n identity

Security: LWE (and LHL) ⇒ MTR is pseudorandom

Decz(C) : zTC = eTR + μzT has “error” δT =eTR. Can recover μ
since error has small entries (w.h.p.)

Gentry-Sahai-Waters

=zT eT
MT

First attempt:

Enc(μ) = MTR + μI

Decz(C) : zTC = eTR + μzT has error δT =eTR

C1+C2 = MT(R1+R2) + (μ1+μ2) I has error δT = δ1T + δ2T

Error adds up with each operation

OK if there is an a priori bound on the depth of
computation: Levelled Homomorphic Encryption

C1 × C2: Error = ?

zTC1C2 = (δ1T + μ1zT)C2 = δ1TC2 + μ1(δ2T +μ2zT)

Error = δ1TC2 + μ1 δ2T

Problem: Entries in δ1TC2 may not be small, as entries in C2
are not small! (Since μ1 ∈ {0,1}, μ1δ2T does have small entries)

Gentry-Sahai-Waters

Problem: Entries in δ1TC2 may not be small

Solution Idea: Represent ciphertext as bits!

But homomorphic operations will be affected

Observation: Reconstructing a number from bits is a linear
operation

If α ∈ Zq
m has bit-representation B(α) ∈ {0,1}km (k=O(log q)),

then G B(α) = α, where G ∈ Zq
m×km (all operations in Zq)

B can be applied to matrices also as B : Zq
m×n
→ Zq

km×n and

we have G B(α) = α

Gentry-Sahai-Waters

Supports messages μ ∈ {0,1} and NAND operations up to an a priori
bounded depth of NANDs

Public key: Pseudorandom M ∈ Zq
m×n s.t. m >> n log q

Private key: non-zero z s.t. Mz has small entries

Enc(μ) = MTR + μG where R ← {0,1}m×kn and G ∈ Zq
n×kn

 (G is the matrix to reverse bit-decomposition)

Decz(C) : zTC = δT + μzTG where δT =eTR

NAND(C1,C2) : G - C1⋅B(C2)

zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)

 = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG
where δT = δ1TB(C2) + μ1δ2T has small entries

In general, error gets multiplied by kn. Allows depth ≈ logkn q

Gentry-Sahai-Waters

Only “left depth”
counts, since
δ ≤ k⋅n⋅δ1 + δ2

Decrypting G yields 1

The Actual Scheme

