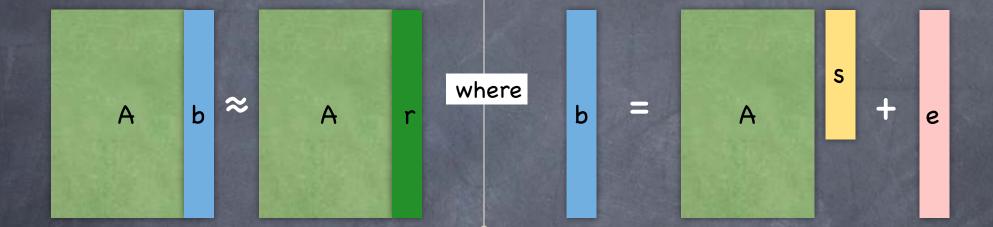
Lattice Cryptography: Towards Fully Homomorphic Encryption Lecture 20

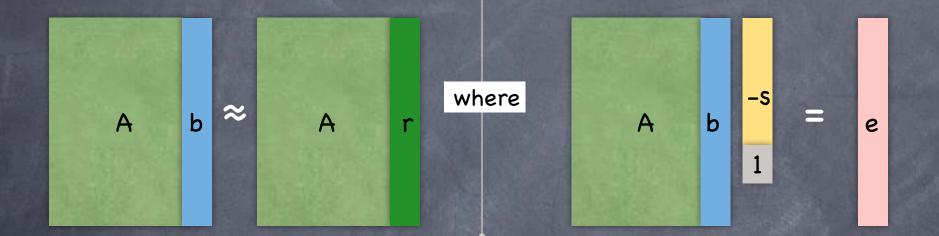
Learning With Errors

Recall



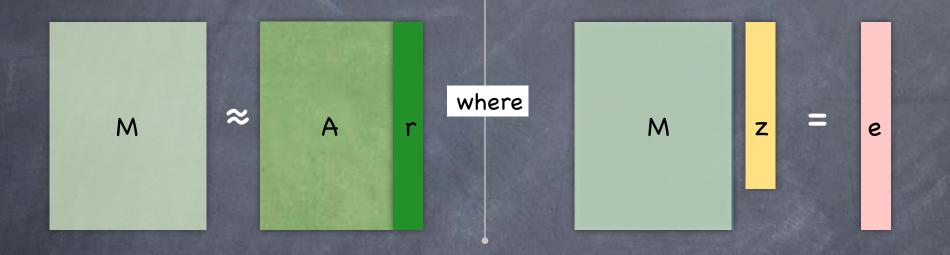
 LWE (decision version): (A,A<u>s</u>+<u>e</u>) ≈ (A,<u>r</u>), where A random matrix in A ∈ Z_q^{m×n}, <u>s</u> uniform, <u>e</u> has "small" entries from a Gaussian distribution, and <u>r</u> uniform.

Learning With Errors



 LWE (decision version): (A,A<u>s</u>+<u>e</u>) ≈ (A,<u>r</u>), where A random matrix in A ∈ Z_q^{m×n}, <u>s</u> uniform, <u>e</u> has "small" entries from a Gaussian distribution, and <u>r</u> uniform.

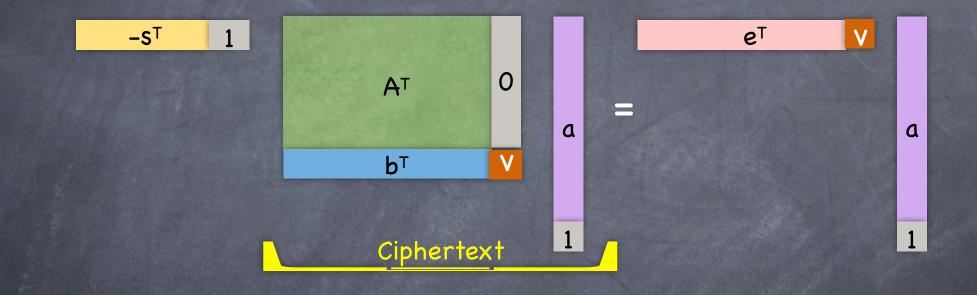
Learning With Errors



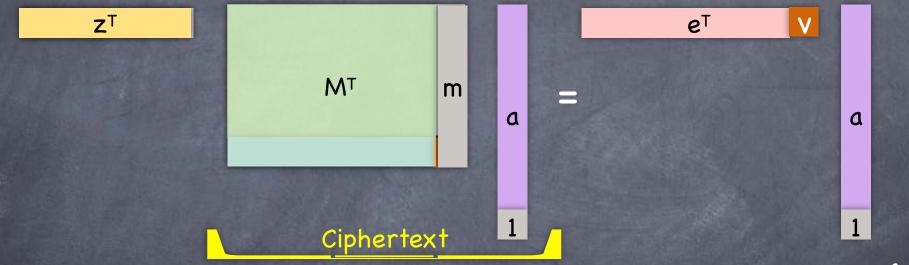
• i.e., a pseudorandom matrix $M \in \mathbb{Z}_q^{m \times n'}$ and non-zero $\underline{z} \in \mathbb{Z}_q^{n'}$ s.t. entries of $M\underline{z}$ are all small (writing n'=n+1)

PKE from LWE

Recall



PKE from LWE



• Ciphertext = $M^T \underline{a} + \underline{m}$ where \underline{m} encodes the message and $\underline{a} \in \{0,1\}^m$

- Decryptng: From $\underline{z}^{T}(M^{T}\underline{a} + \underline{m}) = \underline{e}^{T}\underline{a} + \underline{z}^{T}\underline{m}$ where $\underline{e}^{T}\underline{a}$ is small. To allow decoding from this for, say $\mu \in \{0,1\}$, note $\underline{z}^{T}\underline{m} = v \approx \mu(q/2)$.
- CPA security: M^T<u>a</u> is pseudorandom

Recall

Claim: If M∈Z^{m×n'} is truly random, a∈{0,1}^m\{0^m}, m >> n' log q, then M^Ta is very close to being <u>uniform</u>

Randomness Extraction

- Entries in <u>a</u> are not uniformly random over Z_q^m, but concentrated on a small subset {0,1}^m. We need M^T<u>a</u> to be uniform over Z_q^{n'}
 Follows from two more generally useful facts:
 H_M(<u>a</u>) = M^T<u>a</u> is a 2-Universal Hash Function (for non-zero <u>a</u>)
 If H is a 2-UHF, then it is a good <u>randomness extractor</u>
 - If m >> n' log q, the entropy of <u>a</u> (m bits) is significantly more than that of a uniform vector in $\mathbb{Z}_q^{n'}$ and a good randomness extractor will produce an almost uniform output

Universal Hashing

• Combinatorial HF: $A \rightarrow (x,y)$; $h \leftarrow \mathcal{U}$. h(x)=h(y) w.n.p Even better: 2-Universal Hash Functions 0 "Uniform" and "Pairwise-independent" ∀x≠y,w,z $\Pr_{h \leftarrow \#}$ [h(x)=w, h(y)=z] = 1/|Z|² $\Rightarrow \forall x \neq y \Pr_{h \leftarrow \mathscr{U}} [h(x) = h(y)] = 1/|Z|$ ø e.g. h_{a,b}(x) = ax+b (in a finite field, X=Z)
 • $Pr_{a,b} [ax+b = z] = Pr_{a,b} [b = z-ax] = 1/|Z|$ • $Pr_{a,b}$ [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the two equations (for x≠y) • $\Pr_{a,b} [ax+b = w, ay+b = z] = 1/|Z|^2$

Exercise: Mx (M random matrix) is a 2-UHF for non-zero boolean x Ø

	×	hı(x)	h2(x)	h3(x)	h4(x)
	0	0	0	1	1
	1	0	1	0	1
South States	2	1	0	0	1

Negligible collision-probability if super-polynomial-sized range

Randomness Extractor

Seed randomness Input has high "min-entropy" • i.e., probability of any particular Almost input string is very low unbiased Seed uniform and independent of input output Ext **Biased** input Output vector is shorter than the input • Need input min-entropy > output length $(1+\varepsilon)$ Statistical closeness A strong extractor: (seed, Ext(inp,seed)) ≈ (seed,Uniform) i.e., for any input distribution with enough min-entropy, most choices of seed yield a good deterministic extractor

Randomness Extractor

Seed randomness

Ext

Biased input

Almost

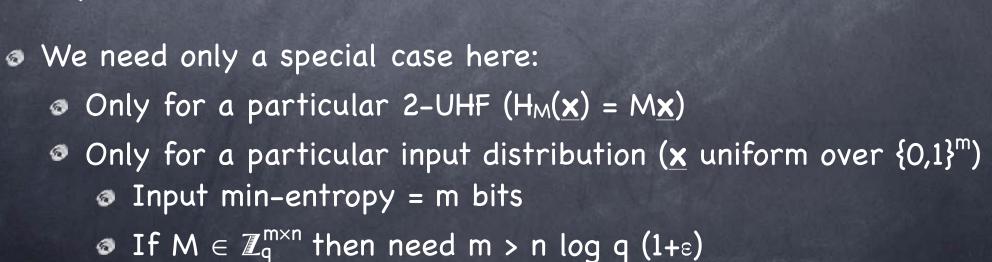
unbiased

output

Leftover Hash Lemma:

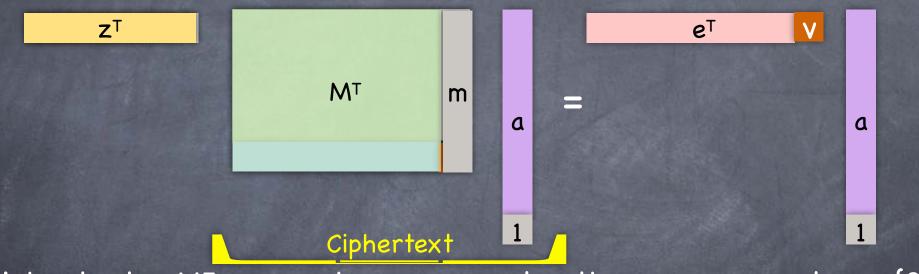
Any 2-UHF is a strong extractor that can extract almost all of the min-entropy in the input

A very useful result



PKE from LWE

Recall



Ciphertext = M^T**a** + **m** where **m** encodes the message and **a** ∈ {0,1}^m
Decryptng: From **z**^T(M^T**a** + **m**) = **e**^T**a** + **z**^T**m** where **e**^T**a** is small. To allow decoding from this for, say μ ∈ {0,1}, let **z**^T**m** = v ≈ μ(q/2).
CPA security: M^T**a** is pseudorandom
Claim: If M∈**Z**^{m×n'} is truly random, **a**∈{0,1}^m\{0^m}, m >> n' log q, then M^T**a** is very close to being uniform

Gentry-Sahai-Waters

Want to allow homomorphic operations on the ciphertext

Idea: Ciphertext is a matrix masked by a pseudorandom matrix that can be "annihilated" with secret key. Addition and multiplication of messages given by addition and multiplication of ciphertexts.

• Recall from LWE: $M \in \mathbb{Z}_q^{m \times n}$ and $\underline{z} \in \mathbb{Z}_q^n$ s.t. $M\underline{z}$ has small entries



- Public-Key = M, Secret-key = z
- Enc(μ) = M^TR + μ I where $\mu \in \{0,1\}$, R $\leftarrow \{0,1\}^{m \times n}$, and I_{n×n} identity
- Security: LWE (and LHL) \Rightarrow M^TR is pseudorandom

• $Dec_z(C)$: $z^TC = e^TR + \mu z^T$ has "error" $\underline{\delta}^T = e^TR$. Can recover μ since error has small entries (w.h.p.)

Gentry-Sahai-Waters

• First attempt:

- Enc(μ) = M^TR + μ I
- $Dec_z(C)$: $z^TC = e^TR + \mu z^T$ has error $\underline{\delta}^T = e^TR$
- $C_1+C_2 = M^T(R_1+R_2) + (\mu_1+\mu_2) I$ has error $\underline{\delta}^T = \underline{\delta}_1^T + \underline{\delta}_2^T$

The Error adds up with each operation

- OK if there is an a priori bound on the <u>depth</u> of computation: Levelled Homomorphic Encryption
- $C_1 \times C_2$: Error = ?

 - Error = $\underline{\delta}_1^{\mathsf{T}}C_2 + \mu_1 \underline{\delta}_2^{\mathsf{T}}$
 - Problem: Entries in $\underline{\delta}_1^{\mathsf{T}}C_2$ may not be small, as entries in C_2 are not small! (Since $\mu_1 \in \{0,1\}, \ \mu_1 \underline{\delta}_2^{\mathsf{T}}$ does have small entries)

Gentry-Sahai-Waters

- Problem: Entries in $\underline{\delta}_1^T C_2$ may not be small
- Solution Idea: Represent ciphertext as bits!
 - But homomorphic operations will be affected
 - Observation: Reconstructing a number from bits is a linear operation
 - If $\alpha \in \mathbb{Z}_q^m$ has bit-representation B(α) ∈ {0,1}^{km} (k=O(log q)), then G B(α) = α , where G ∈ $\mathbb{Z}_q^{m \times km}$ (all operations in \mathbb{Z}_q)
 - B can be applied to matrices also as $B : \mathbb{Z}_q^{m \times n} \to \mathbb{Z}_q^{km \times n}$ and we have $G B(\alpha) = \alpha$

Gentry-Sahai-Waters The Actual Scheme

- Supports messages $\mu \in \{0,1\}$ and NAND operations up to an a priori bounded depth of NANDs
- Public key: Pseudorandom $M \in \mathbb{Z}_q^{m \times n}$ s.t. m >> n log q Private key: non-zero z s.t. Mz has small entries
- Enc(μ) = M^TR + μ G where R \leftarrow {0,1}^{m×kn} and G $\in \mathbb{Z}_q^{n\times kn}$

(G is the matrix to reverse bit-decomposition)

• $Dec_z(C) : \underline{z}^T C = \underline{\delta}^T + \mu \underline{z}^T G$ where $\underline{\delta}^T = e^T R$ • $NAND(C_1, C_2) : G - C_1 \cdot B(C_2)$

Decrypting G yields 1

• $\underline{\mathbf{z}}^{\mathsf{T}}C_1 \cdot B(C_2) = \underline{\mathbf{z}}^{\mathsf{T}}C_1 \cdot B(C_2) = (\underline{\delta}_1^{\mathsf{T}} + \mu_1 \underline{\mathbf{z}}^{\mathsf{T}}G) B(C_2)$ $= \underline{\delta}_1^{\mathsf{T}}B(C_2) + \mu_1 \underline{\mathbf{z}}^{\mathsf{T}}C_2 = \underline{\delta}^{\mathsf{T}} + \mu_1 \mu_2 \underline{\mathbf{z}}^{\mathsf{T}}G$ where $\underline{\delta}^{\mathsf{T}} = \underline{\delta}_1^{\mathsf{T}}B(C_2) + \mu_1 \underline{\delta}_2^{\mathsf{T}}$ has small entries

Only "left depth" counts, since <u>δ</u> ≤ k·n·δ₁ + δ₂

In general, error gets multiplied by kn. Allows depth ≈ log_{kn} q