Lattice Cryptography:
Towards Fully Homomorphic
Encryption

Lecture 20

Learning With Errors

X 3
A bkd A = A +

@ LWE (decision version): (A,As+e) = (A,r), where A random

mxn

matrix in A € Zg", s uniform, e has “small” entries from a

Gaussian distribution, and r uniform.

® Average-case solution for LWE = Worst-case solution for

GapSVP (for appropriate choice of parameters)

Learning With Errors

3 ®
A b Bad A A b =
1

@ LWE (decision version): (A,As+e) = (A,r), where A random

mxn

matrix in A € Zg", s uniform, e has “small” entries from a

Gaussian distribution, and r uniform.

® Average-case solution for LWE = Worst-case solution for

GapSVP (for appropriate choice of parameters)

Learning With Errors

¥ i
M 2% A M Z Fas

mxn’

@ i.e., a pseudorandom matrix M e 4,

/
n

and non-zero Z € 44

s.t. entries of Mz are all small (writing n'=n+1)

y PKE from LWE
5T] -H I |

A Ciphertext ‘ L

PKE from LWE

I v
o a
Ciphertext 1 1
phertex y |

@ Ciphertext = MTa + m where m encodes the message and a € {O,1}m

A

@ Decryptng: From 27(MTa + m) = e'a + z'm where eTa is small. To
allow decoding from this for, say u € {0,1}, note 2Tm = v = u(q/2).
@ CPA security: MTa is pseudorandom

@ Claim: If MeZi!,"xr" is truly random, a<{0,1}"\{0"}, m >> n’ log g,
then MTa is very close to being uniform

Randomness Extraction

@ Entries in a are not uniformly random over Zg, but concentrated

on a small subset {0,1}". We need MTa to be uniform over ZQ
@ Follows from two more generally useful facts:
@ Hm(a) = MTa is a 2-Universal Hash Function (for non-zero a)

@ If His a 2-UHF, then it is a good randomness extractor

@ If m >> n' log q, the entropy of a (m bits) is significantly

n

more than that of a uniform vector in Zq' and a good
randomness extractor will produce an almost uniform output

Universal Hashing

@ Combinatorial HF: A—(x,y); h<—#&. h(x)=h(y) w.n.
(y) (x)=h() P x| hi(x) | ha(x)[h3(x)| ha(x)

@ Even better: 2-Universal Hash Functions

@ “Uniform” and “Pairwise-independent”

@ vX,z Priy [h(xX)=z] = 1/1Z| (Where h:X—Z)

@ Vxzyw,z Prhs [h(x)=w, h(y)=z] = 1/|z|2

@ = vxzy Pris [h(x)=h(y)] = 1/|Z| Negligible collision-probability if

@ e.g. hap(x) = ax+b (in a finite field, X=Z) super-polynomial-sized range

® Prap [ax+b =2] =Prap [b = z-ax] = 1/1Z|

® Prop [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the
two equations (for x#y)

@ Prop [ax+b = w, ay+b = Z] = 1/]Z|2

@ Exercise: MX (M random matrix) is a 2-UHF for non-zero boolean x

Randomness Extractor

Seed randomness

Input has high "min-entropy"

@ i.e., probability of any particular

input string is very low :: Almost
unbiased
Seed uniform and independent of input tput
4 P HETE input | EXT el
Output vector is shorter than the input [|::>
@ Need input min-entropy > output length (1+¢)

Ext(inp,seed)) = Uniform

@ Statistical closeness

A strong extractor: (seed, Ext(inp,seed)) = (seed,Uniform)

@ i.e., for any input distribution with enough min-entropy,
most choices of seed yield a good deterministic extractor

Randomness Extractor

Seed randomness

@ Leftover Hash Lemma:
@ Any 2-UHF is a strong extractor |:II>J> uﬁr\:Lr?aclsefd
that can extract almost all of output

the min-entropy in the input Biased input | EXt l[:

@ A very useful result

@ We need only a special case here:
@ Only for a particular 2-UHF (Hw(x) = Mx)

@ Only for a particular input distribution (x uniform over {0,1}")
@ Input min-entropy = m bits

@ If M € Z3"" then need m > n log q (1+¢)

PKE from LWE

I v
o a
Ciphertext 1 1
phertex y |

@ Ciphertext = MTa + m where m encodes the message and a € {0,1}m

A

@ Decryptng: From 27(MTa + m) = e'a + z'm where eTa is small. To
allow decoding from this for, say p € 10,1}, let zZTm = v = u(q/2).
@ CPA security: MTa is pseudorandom

@ Claim: If MeZic’,"X"' is truly random, a<{0,1}m\{0m}, m >> n’ log q,
then MTa is very close to being uniform

Gentry-Sahai-Waters

@ Want to allow homomorphic operations on the ciphertext

@ Idea: Ciphertext is a matrix masked by a pseudorandom matrix
that can be “annihilated” with secret key. Addition and multiplication
of messages given by addition and multiplication of ciphertexts.

@ Recall from LWE: M € Z5"" and z € Zg s.t. Mz has small entries

=

@ First attempt:
@ Public-Key = M, Secret-key = z
@ Enc(p) = MTR + pI where p € {0,1}, R<{0,1}"™", and I« identity
@ Security: LWE (and LHL) = MTR is pseudorandom

@ Decy(C) : zZTC = eR + pzT has “error” 8T =eTR. Can recover
since error has small entries (w.h.p.)

Gentry-Sahai-Waters

@ First attempt:
@ Enc(p) = MTR + pl
@ Decz(C) : ZTC = eTR + pzT has error 8T =R
@ Ci+Cz2 = MT(Ri1+R2) + (m+p2) I has error 87 = 8,7 + 827
@ Error adds up with each operation

@ OK if there is an a priori bound on the depth of
computation: Levelled Homomorphic Encryption

@ Ci X Cz2: Error =7
@ zTCiCr = (§1T + M1ZT)C2 =86TC2 + H1(§2T 'H‘-ZZT)
@ Error = 5;7C2 + W 827

@ Problem: Entries in 8;"C2 may not be small, as entries in C;
are not small! (Since u; € §0,1}, 1827 does have small entries)

Gentry-Sahai-Waters

@ Problem: Entries in §;7C2 may not be small
@ Solution Idea: Represent ciphertext as bits!
@ But homomorphic operations will be affected
@ Observation: Reconstructing a number from bitfs is a linear
operation
@ If « € Zq has bit-representation B(x) € §0,13™ (k=O(log q)),

then G B(x) = «, where G € Zg™*™ (all operations in Z)

mxn

& B can be applied to matrices also as B : Z§™" — Z:™" and
we have G B(a) = «

Gentry-Sahai-Waters

The Actual Scheme

Supports messages p € {0,1} and NAND operations up to an a priori
bounded depth of NANDs

Public key: Pseudorandom M € Z5 " s.t. m >> n log q
Private key: non-zero z s.t. Mz has small entries

Enc(p) = MR + uG where R < {0,1}™*" and G € ZJ™*"
(G is the matrix to reverse bl’r-decomposi’rion)

Decz(C) : 27C = 8T + u2'G where 8T =eTR
NAND(Cl,Cz) : G - C1'B(C2)

mxn

Decrypting G vyields 1

TC - = 2TC,- - T T . N
@ 27C;-B(C2) = 27C1-B(C2) = (817 + mz™G) B(C2) Only “left depth”
= 3TB(C2) + m2ZTC2 = 8T + wu22’G counts, since
where 8T = §;TB(C2) + mi82T has small entries 6 < K-n-d + 32

@ In general, error gets multiplied by kn. Allows dep’rh = log,, g

