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Learning With Errors

LWE (decision version): (A,As+e) ≈ (A,r), where A random 

matrix in A ∈ Zq
m×n, s uniform, e has “small” entries from a 

Gaussian distribution, and r uniform.


Average-case solution for LWE ⇒ Worst-case solution for 

GapSVP (for appropriate choice of parameters)
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Learning With Errors

i.e., a pseudorandom matrix M ∈ Zq
m×n’ and non-zero z ∈ Zq

n’  

s.t. entries of Mz are all small (writing n’=n+1)

≈ =z eMM A r
 where 



PKE from LWE
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PKE from LWE

Ciphertext = MTa + m where m encodes the message and a ∈ {0,1}m


Decryptng: From zT(MTa + m) = eTa + zTm where eTa is small. To 

allow decoding from this for, say μ ∈ {0,1}, note zTm  = v ≈ μ(q/2).


CPA security: MTa is pseudorandom


Claim: If M∈Zq
m×n' is truly random, a∈{0,1}m\{0m}, m >> n’ log q, 

        then MTa is very close to being uniform
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Entries in a are not uniformly random over Zq
m, but concentrated 

on a small subset {0,1}m. We need MTa to be uniform over Zq
n’



Follows from two more generally useful facts:


HM(a) = MTa is a 2-Universal Hash Function (for non-zero a)


If H is a 2-UHF, then it is a good randomness extractor


If m >> n’ log q, the entropy of a (m bits) is significantly 

more than that of a uniform vector in Zq
n’ and a good 

randomness extractor will produce an almost uniform output

Randomness Extraction



Universal Hashing

x h1(x) h2(x) h3(x) h4(x)

0 0 0 1 1

1 0 1 0 1

2 1 0 0 1

Combinatorial HF: A→(x,y); h←H. h(x)=h(y) w.n.p


Even better: 2-Universal Hash Functions


“Uniform” and “Pairwise-independent”


∀x,z Prh←H	[ h(x)=z ] = 1/|Z| (where h:X→Z)


∀x≠y,w,z Prh←H	[ h(x)=w, h(y)=z ] = 1/|Z|2

⇒ ∀x≠y Prh←H	[ h(x)=h(y) ] = 1/|Z|

Negligible collision-probability if 
super-polynomial-sized range e.g. ha,b(x) = ax+b (in a finite field, X=Z)


Pra,b [ ax+b = z ] = Pra,b [ b = z-ax ] = 1/|Z|


Pra,b [ ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the 
two equations (for x≠y)


Pra,b [ ax+b = w, ay+b = z] = 1/|Z|2


Exercise: Mx (M random matrix) is a 2-UHF for non-zero boolean x 



Randomness Extractor
Input has high “min-entropy"


i.e., probability of any particular 
input string is very low


Seed uniform and independent of input


Output vector is shorter than the input


Need input min-entropy > output length (1+ε) 


Ext(inp,seed) ) ≈ Uniform


Statistical closeness


A strong extractor: (seed, Ext(inp,seed) ) ≈ (seed,Uniform)


i.e., for any input distribution with enough min-entropy, 
most choices of seed yield a good deterministic extractor

ExtBiased input

Almost  
unbiased  
output

Seed randomness



Randomness Extractor

Leftover Hash Lemma:


Any 2-UHF is a strong extractor 
that can extract almost all of 
the min-entropy in the input


A very useful result


We need only a special case here:


Only for a particular 2-UHF (HM(x) = Mx)


Only for a particular input distribution (x uniform over {0,1}m)

Input min-entropy = m bits


If M ∈ Zq
m×n then need m > n log q (1+ε)

ExtBiased input

Almost  
unbiased  
output

Seed randomness



PKE from LWE

Ciphertext = MTa + m where m encodes the message and a ∈ {0,1}m


Decryptng: From zT(MTa + m) = eTa + zTm where eTa is small. To 

allow decoding from this for, say μ ∈ {0,1}, let zTm  = v ≈ μ(q/2).


CPA security: MTa is pseudorandom


Claim: If M∈Zq
m×n' is truly random, a∈{0,1}m\{0m}, m >> n’ log q, 

        then MTa is very close to being uniform
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Want to allow homomorphic operations on the ciphertext


Idea: Ciphertext is a matrix masked by a pseudorandom matrix 
that can be “annihilated” with secret key. Addition and multiplication 
of messages given by addition and multiplication of ciphertexts.


Recall from LWE: M ∈ Zq
m×n and z ∈ Zq

n s.t. Mz has small entries 

 
 

First attempt: 


Public-Key = M, Secret-key = z


Enc(μ) = MTR + μI where μ∈{0,1}, R←{0,1}m×n, and In×n identity


Security: LWE (and LHL) ⇒ MTR is pseudorandom


Decz(C) : zTC =  eTR + μzT has “error” δT =eTR. Can recover μ 
since error has small entries (w.h.p.)

Gentry-Sahai-Waters

=zT eT
MT



First attempt:


Enc(μ) = MTR + μI


Decz(C) : zTC =  eTR + μzT has error δT =eTR


C1+C2 = MT(R1+R2) + (μ1+μ2) I has error δT = δ1T + δ2T


Error adds up with each operation


OK if there is an a priori bound on the depth of 
computation: Levelled Homomorphic Encryption


C1 × C2: Error = ?


zTC1C2 = (δ1T + μ1zT)C2 = δ1TC2 + μ1(δ2T +μ2zT)


Error = δ1TC2 + μ1 δ2T


Problem: Entries in δ1TC2 may not be small, as entries in C2 
are not small! (Since μ1 ∈ {0,1}, μ1δ2T does have small entries)

Gentry-Sahai-Waters



Problem: Entries in δ1TC2 may not be small


Solution Idea: Represent ciphertext as bits!


But homomorphic operations will be affected


Observation: Reconstructing a number from bits is a linear 
operation


If α ∈ Zq
m has bit-representation B(α) ∈ {0,1}km   (k=O(log q)), 

then G B(α) = α, where G ∈ Zq
m×km (all operations in Zq)


B can be applied to matrices also as B : Zq
m×n 
→ Zq

km×n and 

we have G B(α) = α

Gentry-Sahai-Waters



Supports messages μ ∈ {0,1} and NAND operations up to an a priori 
bounded depth of NANDs


Public key:  Pseudorandom M ∈ Zq
m×n s.t. m >> n log q 

Private key: non-zero z s.t. Mz has small entries


Enc(μ) = MTR + μG where R ← {0,1}m×kn and G ∈ Zq
n×kn 

                       (G is the matrix to reverse bit-decomposition)


Decz(C) : zTC =  δT + μzTG where δT =eTR


NAND(C1,C2) : G - C1⋅B(C2)


zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)  

            = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG 
where δT = δ1TB(C2) + μ1δ2T has small entries


In general, error gets multiplied by kn. Allows depth ≈ logkn q

Gentry-Sahai-Waters

Only “left depth” 
counts, since 
δ ≤ k⋅n⋅δ1 + δ2

Decrypting G yields 1

The Actual Scheme


