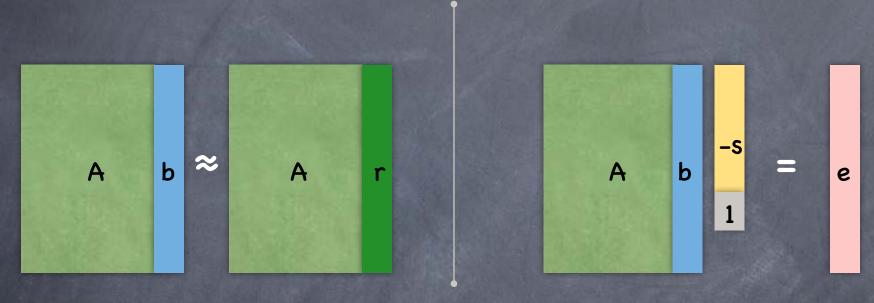
Fully Homomorphic Encryption

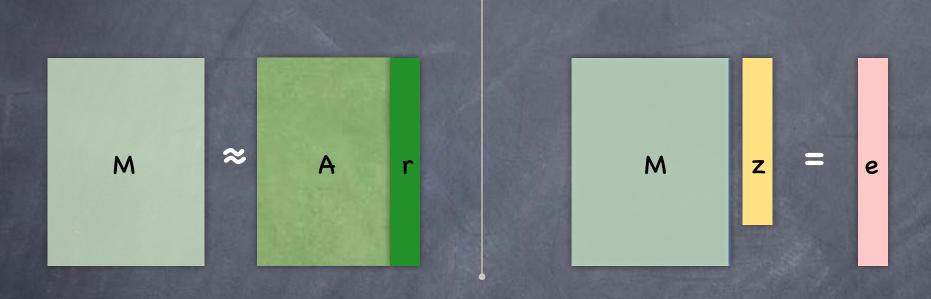
Lecture 21

Learning With Errors



- LWE (decision version): $(A,A\underline{s}+\underline{e}) \approx (A,\underline{r})$, where A random matrix in $A \in \mathbb{Z}_q^{m \times n}$, \underline{s} uniform, \underline{e} has "small" entries from a Gaussian distribution, and \underline{r} uniform.
- Average-case solution for LWE ⇒ Worst-case solution for GapSVP (for appropriate choice of parameters)

Learning With Errors



 ${\color{red} @}$ A pseudorandom matrix $M \in \mathbb{Z}_q^{m \times n'}$ and $\underline{z} \in \mathbb{Z}_q^{n'}$ s.t. entries of $M\underline{z}$ are all small

aecall

Gentry-Sahai-Waters

The Actual Scheme

- $\mbox{@}$ Supports messages $\mu \in \{0,1\}$ and NAND operations up to an a priori bounded depth of NANDs
- Public key: Pseudorandom $M \in \mathbb{Z}_q^{m \times n}$ s.t. m >> n log q
 Private key: non-zero \underline{z} s.t. $M\underline{z}$ has small entries
- © Enc(μ) = MTR + μG where R \leftarrow {0,1}^{m×kn} and G $\in \mathbb{Z}_q^{n×kn}$ (G is the matrix to reverse bit-decomposition)
- **Dec**_z(C): $\underline{z}^TC = \underline{\delta}^T + \mu \underline{z}^TG$ where $\underline{\delta}^T = e^TR$
- \odot NAND(C_1,C_2): $G C_1 \cdot B(C_2)$

Decrypting G yields 1

 $\mathbf{z}^{\mathsf{T}}C_{1} \cdot \mathsf{B}(C_{2}) = \mathbf{z}^{\mathsf{T}}C_{1} \cdot \mathsf{B}(C_{2}) = (\underline{\delta}_{1}^{\mathsf{T}} + \mu_{1}\mathbf{z}^{\mathsf{T}}G) \; \mathsf{B}(C_{2})$ $= \underline{\delta}_{1}^{\mathsf{T}}\mathsf{B}(C_{2}) + \mu_{1}\mathbf{z}^{\mathsf{T}}C_{2} = \underline{\delta}^{\mathsf{T}} + \mu_{1}\mu_{2}\mathbf{z}^{\mathsf{T}}G$ where $\underline{\delta}^{\mathsf{T}} = \underline{\delta}_{1}^{\mathsf{T}}\mathsf{B}(C_{2}) + \mu_{1}\underline{\delta}_{2}^{\mathsf{T}}$ has small entries

Only "left depth" counts, since $\delta \le k \cdot n \cdot \delta_1 + \delta_2$

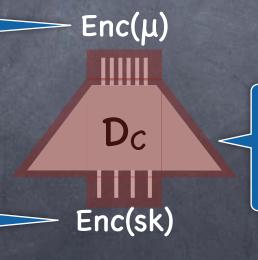
In general, error gets multiplied by kn. Allows depth ≈ log_{kn} q

- Removing the need for an a priori bound
- Main idea: Can "refresh" the ciphertext to reduce noise
 - Refresh: homomorphically decrypt the given ciphertext under a fresh layer of encryption
 - cf. Degree reduction via share-switching: Homomorphically reconstruct under a fresh layer of sharing
 - But here, the reconstruction operation (i.e., decryption) is not known to the party doing the refresh, because the secret-key is not known
 - Idea: Give an encryption of the secret-key and use homomorphism!
 - Will consider decryption of a given ciphertext as a function applied to the secret-key: $D_c(sk) := Dec(C,sk)$

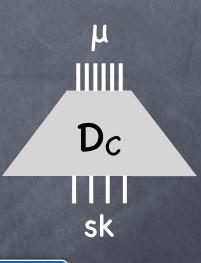
- © Given a ciphertext C and hence the decryption function D_C s.t. $D_C(sk) := Dec(C,sk)$
- Also given: an encryption of sk (beware: circularity!)
- @ Goal: a fresh ciphertext with message $D_c(sk)$

Refreshed: Doesn't depend on how unfresh C was, but only on the depth of D_C

> Fresh encryption of sk, provided along with the public key



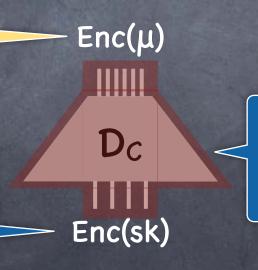
Homomorphic evaluation in the ciphertext space



- If depth of D_C s.t. $D_C(sk) := Dec(C,sk)$ is strictly less than the depth allowed by the homomorphic encryption scheme, a ciphertext C can be strictly refreshed
 - Then can carry out at least one more operation on such ciphertexts (before refreshing again)

Refreshed: Doesn't depend on how unfresh C was, but only on the depth of D_C

> Fresh encryption of sk, provided along with the public key



Homomorphic evaluation in the ciphertext space

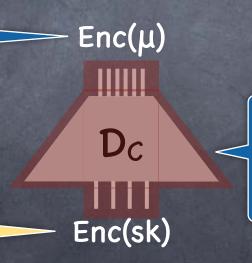
 D_{C}

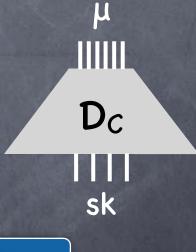
sk

- Circularity: Encrypting the secret-key of a scheme under the scheme itself
 - Can break security in general!
- LWE does not by itself imply security
- Stronger assumption: "Circular Security of LWE"

Refreshed: Doesn't depend on how unfresh C was, but only on the depth of D_C

> Fresh encryption of sk, provided along with the public key





Homomorphic evaluation in the ciphertext space

Bootstrapping GSW

- Supports log(k) depth computation with poly(k) complexity
- Need low depth decryption (as a function of secret-key)
- **3** $\text{Dec}_z(C) : \underline{z}^TC = \underline{\delta}^T + \mu \underline{z}^TG \text{ where } \underline{\delta}^T = e^TR$
 - ♠ And then check if the result is close to O^T or z^TG
 - How?
 - Multiply by B(w) where last coordinate of w is $\lfloor q/2 \rfloor$ and other coordinates 0
 - - ## Has most significant bit = μ (since error $|\varepsilon| << q/4$)
- Dec_z(C): MSB(\underline{z}^TC B(\underline{w})). All operations mod q.
 - If q were small (poly(k)) this would be small depth (log(k))
 - Problem: q is super-polynomial in security parameter k
 - Idea: Can change modulus for decryption!

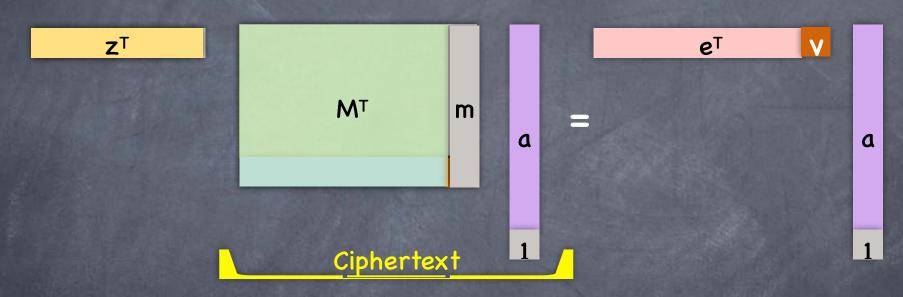
Modulus Switching for GSW

- Dec_z(C): MSB($\underline{z}^TY \% q$), where Y = C B(\underline{w})
- ⊕ To switch to a smaller modulus p < q:
 </p>
 - The consider $Y' = \lceil (p/q) Y \rfloor$. Let $\Delta = Y' (p/q) Y$.
 - $\underline{\mathbf{z}}^{\mathsf{T}} \mathbf{Y}' = (\mathbf{p}/\mathbf{q}) \ \underline{\mathbf{z}}^{\mathsf{T}} \mathbf{Y} + \underline{\mathbf{z}}^{\mathsf{T}} \Delta$ $= \varepsilon_1 + \mu (\mathbf{p}/2) + a\mathbf{p} \text{ where } \varepsilon_1 = (\mathbf{p}/\mathbf{q}) \varepsilon_0 + \underline{\mathbf{z}}^{\mathsf{T}} \Delta$
 - Need $z^T Δ$ to be small. But $z^T = [-s^T 1]$ for s uniform in Z_q^n .
 - Fix: LWE with small s is as good as with uniform s [Exercise]
- Final bootstrapping:
 - Given C, let $Y' = \lceil (p/q) C B(\underline{w}) \rceil$ where p small (poly(k)). Define function $D_{Y'}$ which does decryption mod p. Homomorphically evaluate $D_{Y'}$ on encryption of \underline{z} mod p (encryption is mod q).

Other FHE Schemes

- Gentry (2009)
- Brakerski-Vaikuntanathan, Brakerski-Gentry-Vaikuntanathan (2011-12)
- Brakerski and Fan-Vercauteren (2012)
- Gentry-Sahai-Waters (2013)
- Ø ...
- Schemes based on Ring LWE allow batching: encoding multiple messages into a single message, using Chinese Remainder Theorem
- Many of these schemes obtain Levelled FHE without bootstrapping

PKE from LWE



- Tiphertext $C = M^T \underline{a} + \underline{m}$; \underline{m} encodes the message and $\underline{a} \in \{0,1\}^m$
- ② Decryptng: From $\mathbf{z}^{\mathsf{T}}C = \mathbf{e}^{\mathsf{T}}\mathbf{a} + \mathbf{z}^{\mathsf{T}}\mathbf{m}$ where $\mathbf{e}^{\mathsf{T}}\mathbf{a}$ is small. To allow decoding from this for, say $\mu \in \{0,1\}$, let $\mathbf{z}^{\mathsf{T}}\mathbf{m} = \mathbf{v} \approx \mu(q/2)$.
- Variant: e has (small) even entries and $\mathbf{m}^T = (0 \dots 0 \mu)$. Then $(\mathbf{z}^T C) \% q = \mu$ (mod 2).

BGV Scheme: Overview

 $m^T = (0 ... 0 \mu)$ and <u>e</u> has even entries

- © Ciphertext C = M^Ta + m; m encodes $\mu \in \{0,1\}$ and a ∈ $\{0,1\}$ ^m
- Decrypting: $(z^TC \% q) \% 2$.
- Already supports homomorphic addition (upto a certain number of levels, determined by q, size of noise and dimension m)
- To support a single homomorphic multiplication, consider moving to a different key (and dimensions) after one multiplication, so that $\mathbf{z}_{\text{new}}^{\mathsf{T}}\mathbf{C}$ % $\mathbf{q} = (\mathbf{z}^{\mathsf{T}}\mathbf{C}_1)$ % $\mathbf{q} = (\mathbf{z}^{\mathsf{T}}\mathbf{C}_1)$
 - Want $z_{\text{new}}^{T}C$ % q % 2 = ($z^{T}C_{1}$ % q % 2) ($z^{T}C_{2}$ % q % 2) $= (z^{T}C_{1}) (z^{T}C_{2})$ % q % 2 (when each $z^{T}C_{b}$ % q < √q)

BGV Scheme: Overview

- To support a single homomorphic multiplication, let $\underline{C} = \underline{C_1} \otimes \underline{C_2}$ and move to key $\underline{\mathbf{z}_{big}} = \underline{\mathbf{z}} \otimes \underline{\mathbf{z}}$
- To allow repeated multiplications, need to do dimension reduction (cf. degree reduction in BGW)
 - Will use bit-decomposition operation B(·) and its inverse G
 - To switch from \underline{C} w.r.t \underline{z}_{big} to \underline{C}' w.r.t keys (M', \underline{z}') (where $\underline{z}'^{T}M' = \underline{e}'^{T}$ has small even entries), preserving message:
 - Include D = $(M' + Z_{big} G)$ in the public-key, where $Z_{big} = [O| \underline{z}_{big}]^T$ (so that $\underline{z}'^T Z_{big} = \underline{z}_{big}^T$).
 - Switching: let $C' = D \cdot B(C)$. Then $\underline{z}'^{\mathsf{T}}C' = \underline{e}'^{\mathsf{T}}B(C) + \underline{z}_{\mathsf{big}}^{\mathsf{T}}C$.
- Noise kept under control by repeated modulus switching
 - Levelled FHE, with lowest level using the highest modulus

FHE in Practice

- Several implementations in recent years
 - Prominent ones based on schemes of Fan-Vercauteren (FV) and Brakerski-Gentry-Vaikuntanathan (BGV) with various subsequent optimisations
 - \odot BGV implementations: HELib (IBM), Λ o λ
 - FV implementations: SEAL (Microsoft), FV-NFLlib (CryptoExperts), HomomorphicEncryption R Package ...
 - Both based on "Ring LWE"
- Moderately fast
 - E.g., HELib can apply AES (encipher/decipher) to about 200 plaintext blocks using an encrypted key in about 20 minutes (a bit faster without bootstrapping, if no need to further compute on the ciphertext)