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Learning With Errors

LWE (decision version): (A,As+e) ≈ (A,r), where A random 

matrix in A ∈ Zq
m×n, s uniform, e has “small” entries from a 

Gaussian distribution, and r uniform.

Average-case solution for LWE ⇒ Worst-case solution for 

GapSVP (for appropriate choice of parameters)
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Learning With Errors

A pseudorandom matrix M ∈ Zq
m×n’ and z ∈ Zq

n’  s.t. entries of 

Mz are all small
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Supports messages μ ∈ {0,1} and NAND operations up to an a 

priori bounded depth of NANDs

Public key:  Pseudorandom M ∈ Zq
m×n s.t. m >> n log q 

Private key: non-zero z s.t. Mz has small entries

Enc(μ) = MTR + μG where R ← {0,1}m×kn and G ∈ Zq
n×kn 

                       (G is the matrix to reverse bit-decomposition)

Decz(C) : zTC =  δT + μzTG where δT =eTR

NAND(C1,C2) : G - C1⋅B(C2)

zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)  

            = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG 
where δT = δ1TB(C2) + μ1δ2T has small entries

In general, error gets multiplied by kn. Allows depth ≈ logkn q

Gentry-Sahai-Waters

Only “left depth” 

counts, since 

δ ≤ k⋅n⋅δ1 + δ2

Decrypting G yields 1

The Actual Scheme
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Removing the need for an a priori bound

Main idea: Can “refresh” the ciphertext to reduce noise

Refresh: homomorphically decrypt the given ciphertext under a 
fresh layer of encryption

cf. Degree reduction via share-switching: Homomorphically 
reconstruct under a fresh layer of sharing

But here, the reconstruction operation (i.e., decryption) is  
not known to the party doing the refresh, because the 
secret-key is not known

Idea: Give an encryption of the secret-key and use 
homomorphism!

Will consider decryption of a given ciphertext as a function 
applied to the secret-key: DC(sk) := Dec(C,sk)

Bootstrapping



Given a ciphertext C and hence the decryption function DC s.t. 
DC(sk) := Dec(C,sk)

Also given: an encryption of sk (beware: circularity!)

Goal: a fresh ciphertext with message DC(sk) 
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If depth of DC s.t. DC(sk) := Dec(C,sk) is strictly less than the depth 
allowed by the homomorphic encryption scheme, a ciphertext C 
can be strictly refreshed

Then can carry out at least one more operation on 
such ciphertexts (before refreshing again) 
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Circularity: Encrypting the secret-key of a scheme under the 
scheme itself

Can break security in general!

LWE does not by itself imply security

Stronger assumption: “Circular Security of LWE” 
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Supports log(k) depth computation with poly(k) complexity
Need low depth decryption (as a function of secret-key)
Decz(C) : zTC =  δT + μzTG where δT =eTR

And then check if the result is close to 0T or zTG 
How?
Multiply by B(w) where last coordinate of w is ⌊q/2⌋ and other 
coordinates 0
zTC B(w) = δT B(w) + μzTw  =  ε + μ ⌊q/2⌋

Has most significant bit = μ (since error |ε| << q/4)
 Decz(C) : MSB( zTC B(w) ). All operations mod q.

If q were small (poly(k)) this would be small depth (log(k))
Problem: q is super-polynomial in security parameter k
Idea: Can change modulus for decryption!

Bootstrapping GSW



Decz(C) : MSB( zTY % q), where Y = C B(w)

zTY = ε0 + μ (q/2) + aq (for some a∈Z)

To switch to a smaller modulus p < q:

Consider Y’ = ⌈(p/q) Y⌋. Let Δ = Y’-(p/q)Y.

zTY’ = (p/q) zTY + zTΔ  
      = ε1 + μ (p/2) + ap where ε1 = (p/q)ε0 + zTΔ

Need zTΔ to be small. But zT = [ -sT 1 ] for s uniform in Zq
n.

Fix: LWE with small s is as good as with uniform s [Exercise]
Final bootstrapping: 

Given C, let Y’ = ⌈(p/q) C B(w)⌋ where p small (poly(k)). Define 
function DY’ which does decryption mod p. Homomorphically 
evaluate DY’ on encryption of z mod p (encryption is mod q).

Modulus Switching for GSW



Gentry (2009)

Brakerski-Vaikuntanathan, Brakerski-Gentry-Vaikuntanathan 
(2011-12)

Brakerski and Fan-Vercauteren (2012)

Gentry-Sahai-Waters (2013)

…

Schemes based on Ring LWE allow batching: encoding multiple 
messages into a single message, using Chinese Remainder Theorem

Many of these schemes obtain Levelled FHE without bootstrapping

Other FHE Schemes



PKE from LWE

Ciphertext C = MTa + m; m encodes the message and a ∈ {0,1}m

Decryptng: From zTC = eTa + zTm where eTa is small. To allow 
decoding from this for, say μ ∈ {0,1}, let zTm  = v ≈ μ(q/2).

Variant: e has (small) even entries and mT = (0 … 0 μ). Then  
(zTC) % q  =  μ  (mod 2).
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BGV Scheme: Overview

Ciphertext C = MTa + m; m encodes μ ∈ {0,1} and a ∈ {0,1}m

Decrypting: (zTC % q) % 2.

Already supports homomorphic addition (upto a certain number of 
levels, determined by q, size of noise and dimension m)

To support a single homomorphic multiplication, consider moving to a 
different key (and dimensions) after one multiplication, so that  
znewTC % q = (zTC1 % q) (zTC2 % q)  (mod 2)

Want znewTC % q % 2 = (zTC1 % q % 2) (zTC2 % q % 2)  
             = (zTC1) (zTC2) % q % 2  (when each zTCb % q < √q)

(zTC1) (zTC2) = Σij ziC1,i zjC2,j = Σij (zi⋅zj)(C1,i⋅C2,j).  

So can take znew = z⊗z and C = C1⊗C2.

mT = (0 … 0 μ) 
and e has even entries



BGV Scheme: Overview
To support a single homomorphic multiplication, let C = C1⊗C2 and 
move to key zbig = z⊗z

To allow repeated multiplications, need to do dimension reduction 
(cf. degree reduction in BGW)

Will use bit-decomposition operation B(⋅) and its inverse G

To switch from C w.r.t zbig to C’ w.r.t keys (M’, z’)  
(where z’TM’ = e’T has small even entries), preserving message:

Include D = (M’ + Zbig G) in the public-key, where  
Zbig = [0| zbig]T (so that z’T Zbig = zbigT ).

Switching: let C’ = D⋅B(C).  Then z’TC’ = e’TB(C) +  zbigTC.

Noise kept under control by repeated modulus switching

Levelled FHE, with lowest level using the highest modulus



Several implementations in recent years

Prominent ones based on schemes of Fan-Vercauteren (FV)  and 
Brakerski-Gentry-Vaikuntanathan (BGV) with various subsequent 
optimisations

BGV implementations: HELib (IBM), Λ o λ

FV implementations: SEAL (Microsoft), FV-NFLlib 
(CryptoExperts), HomomorphicEncryption R Package …

Both based on “Ring LWE”

Moderately fast

E.g., HELib can apply AES (encipher/decipher) to about 200 
plaintext blocks using an encrypted key in about 20 minutes (a 
bit faster without bootstrapping, if no need to further compute 
on the ciphertext)

FHE in Practice


