
Fully Homomorphic Encryption
Lecture 21

Learning With Errors

LWE (decision version): (A,As+e) ≈ (A,r), where A random

matrix in A ∈ Zq
m×n, s uniform, e has “small” entries from a

Gaussian distribution, and r uniform.

Average-case solution for LWE ⇒ Worst-case solution for

GapSVP (for appropriate choice of parameters)

≈ =
1

-s
A eA Ab r b

Re
ca

ll

Learning With Errors

A pseudorandom matrix M ∈ Zq
m×n’ and z ∈ Zq

n’ s.t. entries of

Mz are all small

≈ =z eMM A r

Re
ca

ll

Supports messages μ ∈ {0,1} and NAND operations up to an a

priori bounded depth of NANDs

Public key: Pseudorandom M ∈ Zq
m×n s.t. m >> n log q

Private key: non-zero z s.t. Mz has small entries

Enc(μ) = MTR + μG where R ← {0,1}m×kn and G ∈ Zq
n×kn

 (G is the matrix to reverse bit-decomposition)

Decz(C) : zTC = δT + μzTG where δT =eTR

NAND(C1,C2) : G - C1⋅B(C2)

zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)

 = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG
where δT = δ1TB(C2) + μ1δ2T has small entries

In general, error gets multiplied by kn. Allows depth ≈ logkn q

Gentry-Sahai-Waters

Only “left depth”

counts, since

δ ≤ k⋅n⋅δ1 + δ2

Decrypting G yields 1

The Actual Scheme
Re

ca
ll

Removing the need for an a priori bound

Main idea: Can “refresh” the ciphertext to reduce noise

Refresh: homomorphically decrypt the given ciphertext under a
fresh layer of encryption

cf. Degree reduction via share-switching: Homomorphically
reconstruct under a fresh layer of sharing

But here, the reconstruction operation (i.e., decryption) is
not known to the party doing the refresh, because the
secret-key is not known

Idea: Give an encryption of the secret-key and use
homomorphism!

Will consider decryption of a given ciphertext as a function
applied to the secret-key: DC(sk) := Dec(C,sk)

Bootstrapping

Given a ciphertext C and hence the decryption function DC s.t.
DC(sk) := Dec(C,sk)

Also given: an encryption of sk (beware: circularity!)

Goal: a fresh ciphertext with message DC(sk)

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic

evaluation in the

ciphertext spaceFresh encryption of

sk, provided along

with the public key

Refreshed: Doesn’t depend

on how unfresh C was, but

only on the depth of DC

If depth of DC s.t. DC(sk) := Dec(C,sk) is strictly less than the depth
allowed by the homomorphic encryption scheme, a ciphertext C
can be strictly refreshed

Then can carry out at least one more operation on
such ciphertexts (before refreshing again)

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic

evaluation in the

ciphertext spaceFresh encryption of

sk, provided along

with the public key

Refreshed: Doesn’t depend

on how unfresh C was, but

only on the depth of DC

Circularity: Encrypting the secret-key of a scheme under the
scheme itself

Can break security in general!

LWE does not by itself imply security

Stronger assumption: “Circular Security of LWE”

Bootstrapping

DC

sk

μ

DC

Enc(sk)

Enc(μ)

Homomorphic

evaluation in the

ciphertext spaceFresh encryption of

sk, provided along

with the public key

Refreshed: Doesn’t depend

on how unfresh C was, but

only on the depth of DC

Supports log(k) depth computation with poly(k) complexity
Need low depth decryption (as a function of secret-key)
Decz(C) : zTC = δT + μzTG where δT =eTR

And then check if the result is close to 0T or zTG
How?
Multiply by B(w) where last coordinate of w is ⌊q/2⌋ and other
coordinates 0
zTC B(w) = δT B(w) + μzTw = ε + μ ⌊q/2⌋

Has most significant bit = μ (since error |ε| << q/4)
 Decz(C) : MSB(zTC B(w)). All operations mod q.

If q were small (poly(k)) this would be small depth (log(k))
Problem: q is super-polynomial in security parameter k
Idea: Can change modulus for decryption!

Bootstrapping GSW

Decz(C) : MSB(zTY % q), where Y = C B(w)

zTY = ε0 + μ (q/2) + aq (for some a∈Z)

To switch to a smaller modulus p < q:

Consider Y’ = ⌈(p/q) Y⌋. Let Δ = Y’-(p/q)Y.

zTY’ = (p/q) zTY + zTΔ
 = ε1 + μ (p/2) + ap where ε1 = (p/q)ε0 + zTΔ

Need zTΔ to be small. But zT = [-sT 1] for s uniform in Zq
n.

Fix: LWE with small s is as good as with uniform s [Exercise]
Final bootstrapping:

Given C, let Y’ = ⌈(p/q) C B(w)⌋ where p small (poly(k)). Define
function DY’ which does decryption mod p. Homomorphically
evaluate DY’ on encryption of z mod p (encryption is mod q).

Modulus Switching for GSW

Gentry (2009)

Brakerski-Vaikuntanathan, Brakerski-Gentry-Vaikuntanathan
(2011-12)

Brakerski and Fan-Vercauteren (2012)

Gentry-Sahai-Waters (2013)

…

Schemes based on Ring LWE allow batching: encoding multiple
messages into a single message, using Chinese Remainder Theorem

Many of these schemes obtain Levelled FHE without bootstrapping

Other FHE Schemes

PKE from LWE

Ciphertext C = MTa + m; m encodes the message and a ∈ {0,1}m

Decryptng: From zTC = eTa + zTm where eTa is small. To allow
decoding from this for, say μ ∈ {0,1}, let zTm = v ≈ μ(q/2).

Variant: e has (small) even entries and mT = (0 … 0 μ). Then
(zTC) % q = μ (mod 2).

0
1

a
=

1-sT

1

eT

a

v

Ciphertext

Re
ca

ll

MT m

zT

BGV Scheme: Overview

Ciphertext C = MTa + m; m encodes μ ∈ {0,1} and a ∈ {0,1}m

Decrypting: (zTC % q) % 2.

Already supports homomorphic addition (upto a certain number of
levels, determined by q, size of noise and dimension m)

To support a single homomorphic multiplication, consider moving to a
different key (and dimensions) after one multiplication, so that
znewTC % q = (zTC1 % q) (zTC2 % q) (mod 2)

Want znewTC % q % 2 = (zTC1 % q % 2) (zTC2 % q % 2)
 = (zTC1) (zTC2) % q % 2 (when each zTCb % q < √q)

(zTC1) (zTC2) = Σij ziC1,i zjC2,j = Σij (zi⋅zj)(C1,i⋅C2,j).

So can take znew = z⊗z and C = C1⊗C2.

mT = (0 … 0 μ)
and e has even entries

BGV Scheme: Overview
To support a single homomorphic multiplication, let C = C1⊗C2 and
move to key zbig = z⊗z

To allow repeated multiplications, need to do dimension reduction
(cf. degree reduction in BGW)

Will use bit-decomposition operation B(⋅) and its inverse G

To switch from C w.r.t zbig to C’ w.r.t keys (M’, z’)
(where z’TM’ = e’T has small even entries), preserving message:

Include D = (M’ + Zbig G) in the public-key, where
Zbig = [0| zbig]T (so that z’T Zbig = zbigT).

Switching: let C’ = D⋅B(C). Then z’TC’ = e’TB(C) + zbigTC.

Noise kept under control by repeated modulus switching

Levelled FHE, with lowest level using the highest modulus

Several implementations in recent years

Prominent ones based on schemes of Fan-Vercauteren (FV) and
Brakerski-Gentry-Vaikuntanathan (BGV) with various subsequent
optimisations

BGV implementations: HELib (IBM), Λ o λ

FV implementations: SEAL (Microsoft), FV-NFLlib
(CryptoExperts), HomomorphicEncryption R Package …

Both based on “Ring LWE”

Moderately fast

E.g., HELib can apply AES (encipher/decipher) to about 200
plaintext blocks using an encrypted key in about 20 minutes (a
bit faster without bootstrapping, if no need to further compute
on the ciphertext)

FHE in Practice

