
Functional Encryption
Lecture 22

Functional Encryption

Enc

KeyGen

Dec

Dec

Dec

PK

Ciphertext

Kg

x g(x)

g
f

h

Kf

Kh

h(x)

f(x)

PK SK

Key SKf allows the decrypting party to learn f(x) from Enc(x)

cf. FHE, can compute Enc(f(x)) from Enc(x), but cannot decrypt

Obtaining multiple keys for f, g, h etc. should not let one learn
more than f(x), g(x), h(x) etc.

Should not allow pooling keys to learn more information

Functional Encryption

Single-Key FE
In which key for only one function will be ever be released

Function is not known when ciphertexts are created
(otherwise trivial [Why?])

A single-key FE scheme supporting arbitrary functions (with
circuits of a priori bounded size)

Encryption of x is a Garbled circuit encoding the universal
function: F(x,f) = f(x), with x being the garbler’s input

Plus, 2n encrypted wire labels for the n input wires of f
(using 2n public-keys in the master public-key)

Key for f: n secret-keys corresponding to the n bits of f

Can decrypt the labels of f → can evaluate F(x,f)

No Unbounded Sim-FE
Suppose we require simulation-based security for FE

Then there are function families which have no FE scheme that
supports releasing an unbounded number of keys

e.g., The message x is the seed of a PRF. The function fz
evaluates the PRF on the input z: fz(x) = PRFx(z).

{ PRFxj(zi) | j=1 to N, i=1 to N } are N2 k-bit pseudorandom
strings

Simulation should encode them into an (LN+L’N)-bit string
(i.e., the simulated ciphertexts and keys)

If Nk >> L+L’, not possible for truly random strings, and
hence for pseudorandom strings too (even if simulator
knows all zi and all N2k bits, but not any xj, a priori)

(Weaker) Security definitions using a game between an
adversary and a challenger

Challenger gets (PK,SK) ← KeyGen, and gives PK to Adv

Adv can ask for SKf for any number of f of its choice

Adv sends (m0,m1) to Challenger

Challenger picks b ← {0,1} and, if f(m0)=f(m1) for all f for which
Adv received SKf, sends Enc(mb) to Adv

Adv outputs b’ (as a guess for b)

Security: ∀ PPT Adv, Pr[b’=b] ≈ ½

Selective security: Adversary has to send (m0,m1) at first (before
KeyGen is run)

Indistinguishability-Based FE

Message x=(α,m), and functions fπ s.t. fπ(x)=(α, m iff π(α)=1)

α is the index which is public, and m is output iff π(α)=1,
where π is a predicate

Identity-Based Encryption (IBE): πβ(α) = 1 iff α=β

Attribute-Based Encryption (ABE)

Key-Policy ABE: α ∈ {0,1}n and π a circuit (policy) over n
Boolean variables

Ciphertext-Policy ABE: α a circuit (policy) over n Boolean
variables, and π evaluates an input circuit on a fixed
assignment

Predicate Encryption: x=(α,m) and function fπ contains a
predicate π s.t. fπ(x) = m iff π(α)=1 (⊥ otherwise).

Note: Not public-index, as α remains hidden

Index-Payload Functions

Identity-Based Encryption: fβ(α,m) = (α,m) iff α=β (else (α,⊥))

Useful as a public-key encryption scheme within an enterprise

A key-server (with a master secret-key MSK and a master
public-key PK) that can generate SKID for any given ID

Encryption will use PK, and the receiver’s ID (e.g., email)

Receiver has to obtain SKID from the key-server

Identity-Based Encryption
Re

ca
ll

IBE from Pairing

MPK: g,h, Y=e(g,h)y, π = (u,u1,...,un)

MSK: hy

Enc(m;ID) = (gr, π(ID)r, m.Yr)

SK for ID: (gt, hy.π(ID)t) = (d1, d2)

Dec (a, b, c; d1, d2) = c/ [e(a,d2) / e(b,d1)]

Full security based on Decisional-BDH

π(ID) = u Π ui
i:IDi=1

Re
ca

ll

ABE schemes
Easy solution for Single-Key CP-ABE, using secret-sharing

The policy defines an access structure over the set of attributes

Secret-share the message for this access structure, and encrypt
individual shares using attribute-specific keys PKa

Key for an attribute set A, SKA = { SKa | a ∈ A }

Note: cannot issue SKA and SKA’ as it allows computing SKA∪A’

Will see how to use bilinear pairings for CP/KP-ABE to allow
multiple keys when restricted to “linear policies”

Linear policies (a.k.a. Monotone Span Programs): the access
structure (which sets of attributes allow decryption) is the
access structure for a linear secret-sharing scheme

Linear Secret-Sharing
Reconstruct(σi1,…,σit): pool together available coordinates T⊆[N].

Can reconstruct if there are enough equations to solve for m.

Can work with any non-zero target vector d instead of [1 0 … 0]
(by encoding m into c so that ⟨d,c⟩=m)

[Exercise] An access structure has a linear secret-sharing scheme
using [1 0 … 0] iff it has one with vector d (for any vector d≠0)

W

 m

c1

c2

:

cu

=

vTvT

vT s.t. support only on
coordinates T⊆[N] and

vT⋅W = [1 0 … 0]

s1

s2

:

sN

Example of a Linear Policy

Consider this policy, over 7 attributes

W (with target vector [1 1 1 1]):

Can generalize AND/OR to threshold gates

OR

AND ANDAND

OR

0 1 1 1

1 0 0 0

1 1 0 1

0 0 1 0

1 1 1 0

1 1 1 0

0 0 0 1

KP-ABE For Linear Policies
PK: g, Y=e(g,g)y, T = (gt1,..., gtn) (n attributes)

MSK: y and ta for each attribute a

Enc(m,A;s) = (A, { Ta
s }a∈A, m.Ys)

SK for policy W (with n rows): Let u=(u1 ... un) s.t. Σa ua = y.
For each row a, let xa = ⟨Wa,u⟩/ta. Let Key X = { gxa }a∈[n]

Dec ((A,{Za}a∈A,C); {Xa}a∈[n]) : Get Ys = Πa∈A e(Za,Xa)va
where v = [v1 ... vn] s.t. va=0 if a ∉ A, and v W = [1…1].
Recover m as C/Ys.

A random vector u for each key to prevent collusion

Selective (attribute) security based on Decisional-BDH

Σa [s·ta ⟨Wa,u⟩/ta] va = s ⟨ΣavaWa , u⟩

CP-ABE For Linear Policies
PK: g, Y=e(g,g)y, Q=gq, (T1,…,Tn) = (gt1,..., gtn) (n attributes)

MSK: gy

Enc(m,W;s,r1,…,rn) = (W, { Qσa Ta
-ra , gra }a∈[n] , gs, m.Ys) where

(σ1,…,σn) is a secret-sharing of s for access structure W

SK for attribute set A: Let u be random. SKA = (K,L,{ Ka }a∈A)

where K=gy.Qu, L=gu, Ka = Ta
u

Dec ((W,{Za,Ra}a∈A,S,C); (K,L,{ Ka }a∈A)) : Get Ys as

e(S,K)/ Πa∈A [e(Za,L)⋅e(Ra,Ka)]va where v = [v1 ... vn] s.t. va=0 if
a ∉ A, and v σ = s. Then m = C/Ys

Note: a random u for each key to prevent collusion

Selective (attribute) security under strong assumptions

s(y+qu) - Σa [(qσa-rata)u + ratau] va

Beyond Linear Policies

E.g., Policy given as an arithmetic circuit f: Zqt → Zq .

Policy satisfied by attribute set α iff f(α) = 0.

KP-ABE: SKf decrypts a ciphertext with attribute α iff f(α) = 0

Very expressive policy ⇒ no conceptual distinction between

CP-ABE and KP-ABE

Can implement CP-ABE also as KP-ABE: α encodes a policy (as
bits representing a circuit) and f implements evaluating this
policy on attributes hardwired into it

Next time: ABE for general functions from LWE

