Functional Encryption

Lecture 22

Functional Encryption

Key SK_f allows the decrypting party to learn f(x) from Enc(x)
cf. FHE, can compute Enc(f(x)) from Enc(x), but cannot decrypt
Obtaining multiple keys for f, g, h etc. should not let one learn more than f(x), g(x), h(x) etc.

Should not allow pooling keys to learn more information

Single-Key FE

In which key for only one function will be ever be released

- Function is not known when ciphertexts are created (otherwise trivial [Why?])
- A single-key FE scheme supporting arbitrary functions (with circuits of a priori bounded size)
 - Encryption of x is a Garbled circuit encoding the universal function: F(x,f) = f(x), with x being the garbler's input
 - Plus, 2n encrypted wire labels for the n input wires of f (using 2n public-keys in the master public-key)
 - Key for f: n secret-keys corresponding to the n bits of f
 - Solution Can decrypt the labels of $f \rightarrow can$ evaluate F(x,f)

No Unbounded Sim-FE

- Suppose we require <u>simulation-based</u> security for FE
- Then there are function families which have no FE scheme that supports releasing an <u>unbounded</u> number of keys
- e.g., The message x is the seed of a PRF. The function f_z evaluates the PRF on the input z: f_z(x) = PRF_x(z).
 - § PRF_{xj}(z_i) | j=1 to N, i=1 to N } are N² k-bit pseudorandom strings
 - Simulation should encode them into an (LN+L'N)-bit string (i.e., the simulated ciphertexts and keys)
 - If Nk >> L+L', not possible for truly random strings, and hence for pseudorandom strings too (even if simulator knows all z_i and all N²k bits, but not any x_j, a priori)

Indistinguishability-Based FE

- (Weaker) Security definitions using a game between an adversary and a challenger
- Ø Challenger gets (PK,SK) ← KeyGen, and gives PK to Adv
- Adv can ask for SK_f for any number of f of its choice
- Adv sends (m_0, m_1) to Challenger
- Generic Challenger picks b ← {0,1} and, if f(m₀)=f(m₁) for all f for which Adv received SK_f, sends Enc(m_b) to Adv
- Adv outputs b' (as a guess for b)
- Security: ∀ PPT Adv, Pr[b'=b] ≈ $\frac{1}{2}$
- Selective security: Adversary has to send (m₀,m₁) at first (before KeyGen is run)

Index-Payload Functions

• Message x=(a,m), and functions f_{π} s.t. $f_{\pi}(x)=(a, m \text{ iff } \pi(a)=1)$

- a is the index which is <u>public</u>, and m is output iff π(a)=1,
 where π is a predicate
- **a** Identity-Based Encryption (IBE): $\pi_{\beta}(\alpha) = 1$ iff $\alpha = \beta$
- Attribute-Based Encryption (ABE)

 - Ciphertext-Policy ABE: a a circuit (policy) over n Boolean variables, and π evaluates an input circuit on a fixed assignment

Predicate Encryption: x=(a,m) and function f_π contains a predicate π s.t. f_π(x) = m iff π(a)=1 (⊥ otherwise).
 Note: Not public-index, as a remains hidden

Identity-Based Encryption

Recall

Identity-Based Encryption: f_β(a,m) = (a,m) iff a=β (else (a,⊥))
Useful as a public-key encryption scheme within an enterprise
A key-server (with a master secret-key MSK and a master public-key PK) that can generate SK_{ID} for any given ID
Encryption will use PK, and the receiver's ID (e.g., email)
Receiver has to obtain SK_{ID} from the key-server

IBE from Pairing

MPK: g,h, Y=e(g,h)^y, π = (u,u₁,...,u_n)
 MSK: h^y
 Enc(m;ID) = (g^r, π(ID)^r, m.Y^r)

SK for ID: $(q^{\dagger}, h^{\gamma}.\pi(ID)^{\dagger}) = (d_1, d_2)$

Recall

Dec (a, b, c; d₁, d₂) = c/ [$e(a,d_2)$ / $e(b,d_1)$]

Full security based on Decisional-BDH

ABE schemes

- Easy solution for Single-Key CP-ABE, using secret-sharing
- The policy defines an access structure over the set of attributes
 - Secret-share the message for this access structure, and encrypt individual shares using attribute-specific keys PK_a
 - Get A and A attribute set A, $SK_A = \{SK_a \mid a \in A\}$
 - Note: cannot issue SKA and SKA as it allows computing SKAUA
- Will see how to use bilinear pairings for CP/KP-ABE to allow multiple keys when restricted to "linear policies"
 - Linear policies (a.k.a. Monotone Span Programs): the access structure (which sets of attributes allow decryption) is the access structure for a linear secret-sharing scheme

Linear Secret-Sharing

Reconstruct($\sigma_{i_1},...,\sigma_{i_t}$): pool together available coordinates T⊆[N].
 Can reconstruct if there are enough equations to solve for m.

Can work with any non-zero target vector <u>d</u> instead of [1 0 ... 0] (by encoding m into <u>c</u> so that (<u>d</u>,<u>c</u>)=m)

[Exercise] An access structure has a linear secret-sharing scheme using [1 0 ... 0] iff it has one with vector <u>d</u> (for any vector <u>d</u>+0)

Example of a Linear Policy

Consider this policy, over 7 attributes

• W (with target vector [1 1 1 1]):

Can generalize AND/OR to threshold gates

KP-ABE For Linear Policies

PK: g, Y=e(g,g)^y, T = $(g^{\dagger 1}, ..., g^{\dagger n})$ (n attributes)

 \bigcirc MSK: y and t_a for each attribute a

- SK for policy W (with n rows): Let $u=(u_1 \dots u_n)$ s.t. $\Sigma_a u_a = y$. For each row a, let $x_a = \langle W_a, u \rangle / t_a$. Let Key X = { $g^{x_a} \}_{a \in [n]}$
- A random vector u for each key to prevent collusion
 Selective (attribute) security based on Decisional-BDH

CP-ABE For Linear Policies

PK: g, Y=e(g,g)^y, Q=g^q, (T₁,...,T_n) = (g^t₁,..., g^t_n) (n attributes)
 MSK: g^y

- Enc(m,W;s,r₁,...,r_n) = (W, { $Q^{\sigma_a}T_a^{-r_a}$, g^{r_a} }_{a \in [n]}, g^s , m.Y^s) where
 ($\sigma_1,...,\sigma_n$) is a secret-sharing of s for access structure W
- SK for attribute set A: Let u be random. $SK_A = (K,L, \{K_a\}_{a \in A})$ where $K=g^y.Q^u$, $L=g^u$, $K_a = T_a^u$

Dec ((W,{Z_a,R_a}_{a∈A},S,C); (K,L,{ K_a}_{a∈A})) : Get Y^s as $e(S,K) / \prod_{a∈A} [e(Z_a,L) \cdot e(R_a,K_a)]^{v_a} \text{ where } v = [v_1 ... v_n] \text{ s.t. } v_a=0 \text{ if } a \notin A, \text{ and } v \underline{\sigma} = s. \text{ Then } m = C/Y^s s(y+qu) - \Sigma_a [(q\sigma_a-r_at_a)u + r_at_au] v_a$

Note: a random u for each key to prevent collusion

Selective (attribute) security under strong assumptions

Beyond Linear Policies

Solve the set a set

Can implement CP-ABE also as KP-ABE: a encodes a policy (as bits representing a circuit) and f implements evaluating this policy on attributes hardwired into it

Next time: ABE for general functions from LWE