Functional Encryption

Lecture 23
ABE from LWE



Functional Encryption

Fez(x) = (a, m iff f(a)=2)



F etc. adaptively chosen by
adversary. Need F(x%) = F(x¥) etc.
ABE: a5 = aT = a*, and
oy Ff,z S.f. F(a*) I 4

y

ABE: x = (a,m)
Fez(x) = (a, m iff f(a)=z)



Functional Encrypti
Selective Security

Selective: (x§, x¥)
output before PK

ABE: Only a* is
output initially

ABE: x = (a,m)
Feo(x) = (0, m iff f(a)=z)




Today: ABE From LWE

@ Policy given as an arithmetic circuit f: Zst — Z4 and a value z.

Key SK¢, decrypts ciphertext with attribute a iff f(a) = z.
@ Very expressive policy = no conceptual distinction between

CP-ABE and KP-ABE

@ Can implement CP-ABE also as KP-ABE: a encodes a policy (as
bits representing a circuit) and f implements evaluating this
policy on attributes hardwired into it



ABE From IBE?

@ Key-policy is (f,z) where f comes from a very large function family

@ But instead suppose we had a small number of functions f
(but z comes from an exponentially large range)

@ Then enough to have a set of IBE instances one for each f
@ PK = { Kf } one for each f
@ SKfz = SK for ID z under scheme for f
@ Encpek(a,m) = (a, { Enckdm;f(a)) 3 )

@ At a high level, will emulate this idea. But instead of listing
Enckdm;f(a)) for each f, will include elements from which any of

them can be constructed at the time of decryption

@ Key Homomorphism (BGGHNSVV'14)




Key-Homomorphism

@ Overview:
@ Suppose each attribute a has t bits, and f given as a circuit
@ Public key Kr constructed from PK = { K; }i-1,..+

@ Derived ciphertext Enck/{m;f(a)) would be of the form

(Qta)(s), mask(s)+m) where s is randomly chosen

@ Qrf)(s) can be constructed from { Qiai(S) fiz1,..t
(which is what is included in the actual ciphertext)

@ SK¢, can extract mask(s) from Qgx(s)



ABE From LWE

(f.2) Kr
, &= |
i PKEvalt
PK s (Kl:m:K’r:Kmask) Ill 2 T|<1,
SK¢z can recover
Mask(s;Kmask) from Qg (s)
CHE [ d, Ql,al(s):m, Qf,(]f(s)l QF,F(G)
m + Mask(s;Kmask) ] ]
- -
(G,m) ) i CTEVGIF
! I
If f(a)=z, decode Qs fq) Qua; - Qo

using SK¢z to get
MGSK(SJKmask)



ABE From LWE

@ PK: Ki = [ Ao | Ai ] and Kmask = D, where Ao, Aj < Zqvm, D < Z=d

@ m > n log q so that Ar is statistically close to uniform even
when r has small entries (e.g., bits) | 4 “small” basis for Aa\}

@ Fact: Can pick A along with a trapdoor Ta so that, given u € Z",
one can use Ta to sample r with small Z4 entfries s.t. Ar = u
@ = sample R with small entries so that AR=D for D € Z

@ = can sample such an R so that [A | H ]JR =D, for any H, D

@ Need [AIH][R:i|R2] =D. Sample R;. Then use Ta to
sample RiT s.t. ARiT = D - HR,T

@ MSK: Trapdoor Ta,



ABE From LWE

Underlying IBE

@ PK: K=[Ao| A] and Kmask = D, where Ag, A < Am, D — A
and MSK: Trapdoor Ta,

[Used for key-homomorphism. Not needed for IBE

Y
@ For an identity z € Z, let KBz denote [Ao | A + 2G], where G is
the matrix to invert bit decomposition

@ Enc(m;z) = ( Q.(s), mask(s) + | q/2] m) where Q.(s) 5 (KEz)Ts and

~ DT . . . .
m05k(§) DTs [Usmg = to denote adding a small noise (as in LWE) ]

@ SK;: R, with small entries s.t. (KEz) R, = D (computed using Ta,)

@ Decryption: R,T-Qz(s) = mask(s). Recover m € {0,1}d.



ABE From LWE

@ PK: Ki =[ Ao | A ] and Kmask = D, where Ao, Ai < Eqnxm, D < Eand
and MSK: Trapdoor Ta,

3 Qiq(s) = (KiEQ)T™s where s < Zg".

T Across all i, use same = Aq's part.

@ CT = ({Qi(s)}ti, mask(s) + [q/2]m), where m € {0,1}4, mask(s) = DTs
@ K¢ = [ Ao | Ar ] where As = PKEval(f,Ai,...,A:) (To be described)
@ Qfr,fa)(s) = CTEval(f,0,Q1,0,(8).-.Qtas(s)) = (KeEf(a))s (To be described)

@ SK¢z: Compute K¢. Use Ta, to get R¢; s.t. (K¢BHz) Rez = D

@ Decryption: Compute Qg,fq)s). If f(a)=z, then R¢. T Qf,fq)s) = DTs.
Recover m e {0,1}d.



ABE From LWE

@ Ki = [ Ao | Af ] where Af = PKEval(f,Ai,...,At) (To be described)
@ Q. fa)s) = CTEval(f,a,Q1,0,(8)....Qtai(s)) = (K¢ f(a))™s (To be described)

@ CTEval computed gate-by-gate

@ Enough to describe CTEval(fi+f2, (z1,22), Qf;2,(S), Qr,2,(8)) and
CTEval(f: - f2, (z1,22), Qf,.2,(S), Qfy,z5(S))

@ Recall Qf,;z,(s) = (Ke;BZ1)Ts = [ Ao | A, + 216G TTs
@ Keep = AoTs aside. To compute [ Ags,.¢,) + 9(21,22)G ]'s for g=+,-

3 [ Ae 421G J's + [ Ar+z2G JTs = [ Arpef, + (21 + 22) G JTs with

RS RRRAY (errors add )

@ z2 - [ As+z1G 17s - B(Af)T [ Ar, 422G ITs = [-A¢,B(Af,) + 2122G]Ts

@ err = zz-err; + B(A¢)Terrz. Need z; to be small.



ABE From LWE

@ Security?

@ Sanity check: Is it secure when no function keys SK¢, are given to
the adversary?

@ Security from LWE

@ All components in the ciphertext are LWE samples of the form
(a,s)+noise, for the same s and random a.

@ Hence all pseudorandom, including the mask DTs + noise
@ Do the secret keys SK¢. make it easier to break security?

@ Claim: No!



ABE From LWE

@ Scheme is selective-secure (under LWE)

@ Recall selective security for ABE:
- Adversary first outputs a* before seeing PK
- Then obtains keys SK;. s.t. f(a*) # z
- Gives x& = (a*mo) and x{ = (a*m;) and gets challenge Enc(xy")

@ Plan: Simulated execution (indistinguishable from real) where PK*
is designed such that, without MSK*, one can generate SK¢, for all
f and all z # f(a*)

@ Breaking encryption for a* will still need breaking LWE!



ABE From LWE

@ Plan: Simulated execution (indistinguishable from real) where PK*
is designed such that, without MSK*, one can generate SK¢, for all

(f,z) s.t. z # f(a*)
@ D, Ao as before but without trapdoor (i.e., given from outside)

@ Other keys A; are (differently) trapdoored: A* = AoSi - a*G
where S; have small entries

@ AoSi close to uniform (like A;i) by extraction argument
@ Consider a query (f,z) where z # f(a*) =: z*

@ Need to give R¢, s.t. (KfBz) Re, =D

@ Do not have a trapdoor for K¢ = [ Ao | Af - 2*G ]

@ Will use a trapdoor for As - z*G instead!



Two Trapdoors

@ Fact: Given Ao, H € Z;™™ of rank n, and D, can sample small R s.t.

[ Ao | H] R = D if we have: a “small” basis for A'a, ]

@ Either the trapdoor Ta, for sampling small Ro s.t. AoRp = U
@ Or (S,Th-a,s) s.t. H - AoS has full rank and S “small”

@ E.g., small S s.t. H = ApS + z'G for z' # 0 and G has a known
trapdoor Te (which is also a trapdoor for z'G)

@ In the actual construction, we used the fact that (Ao, Ta,) can be

generated together, to be able to give out function keys R¢..
(Ai picked randomly, resulting in random Ag.)

@ In the security proof, given an Ao from outside, will construct
A = AoSi - Ai*G and maintain A*s = ApSs - f(0*)G. Then, if z # f(a*)
and so H = A*+2G = AoSs + 2'G for 2’ = z-f(a*) # O, can sample Rg¢..



Simulation of Keys

@ Simulated KeyGen (given a*) produces keys which are statistically
close to the original keys

@ Public Key: Accepts Ao from outside. Picks A* = AoSi - a*iG
where S; have small entries.

@ Given f, Af* defined by PKEval (& St s.t. Af* = AoSr - f(0*)G )
@ Function Keys: Given (f,z) s.t. z # f(a*), Rz s.t. (Kf*Bz) R, = D.
@ Ke*mEz = [ Ao | AF* + 2zG] = [ Ao | ASt - F(0*)G + zG]
= [ Ao | AoSs + 2'G] where z'#0
@ S¢ remains small (assuming f2(a*) is small in products f;-f2 in
the circuit for computing f(a*))
@ So can sample small R¢; as required (type 2 trapdoor)

@ Simulated keys are statistically indistinguishable from the keys in
the real experiment



Simulation of Ciphertext

@ Accepts = Ao's and = DTs from outside, and produces a ciphertext
(corresponding to the given s, but without knowing s)

@ Need Qiq*(s) = (K*iBa*))Ts and mask(s) = DTs
@ For Qiq*(s), need = (A™* + a*iG)'s = (AoS)Ts = SiTAoTS.
Can derive this from = AoTs and S; (SiT-noise is fresh noise)

@ Simulated Qiq%(s) and mask(s) are statistically indistinguishable
from the real experiment (conditioned on the keys)

@ But if = ApTs and = DTs are replaced by random vectors, then:
@ No information about the message (because random mask)
@ Indistinguishable from the simulation above (by LWE)

@ In turn statistically indistinguishable from the real
experiment



