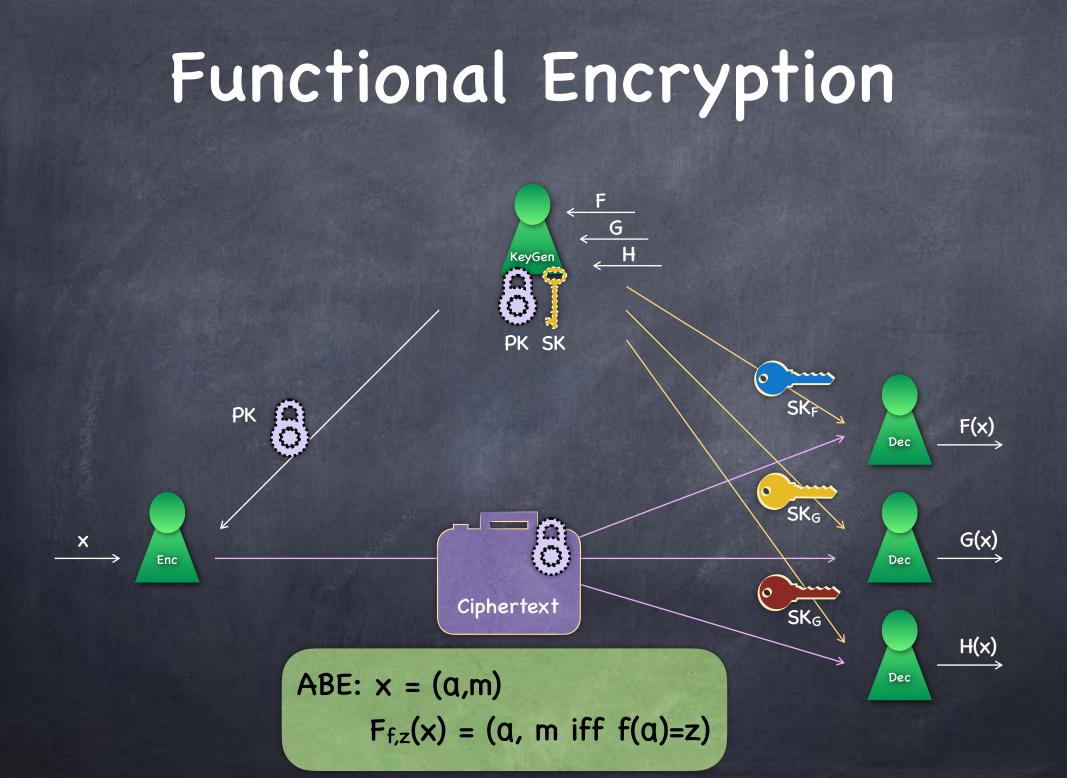
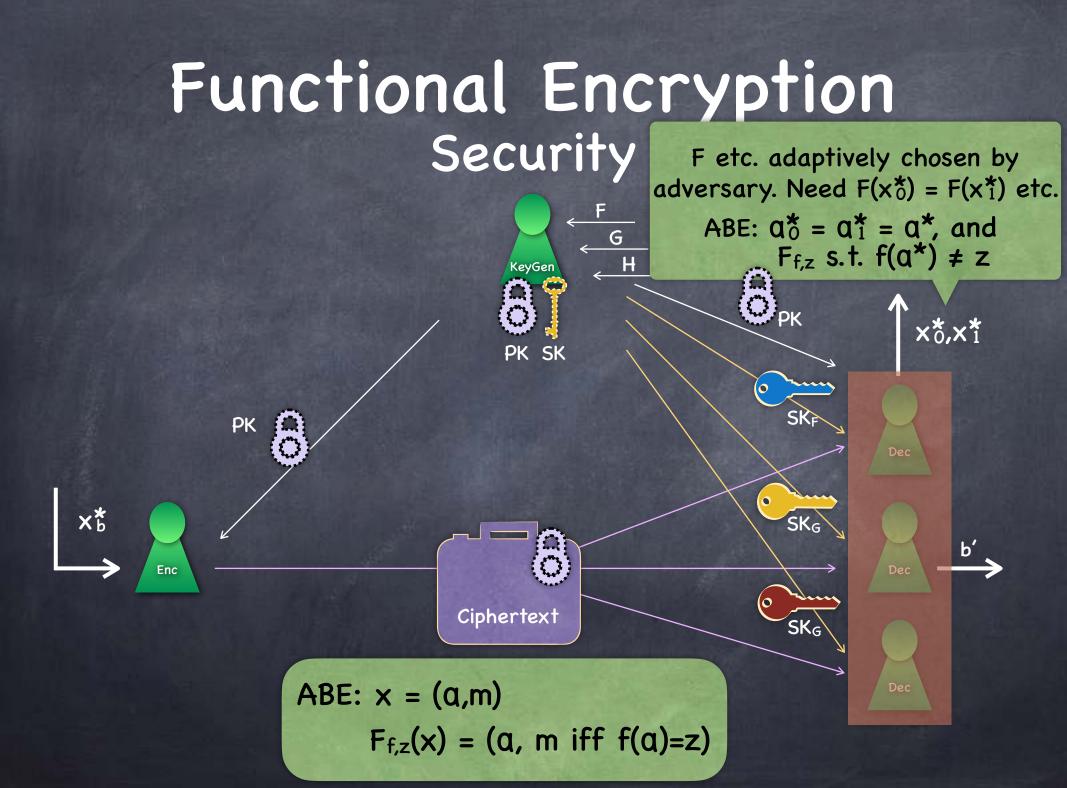
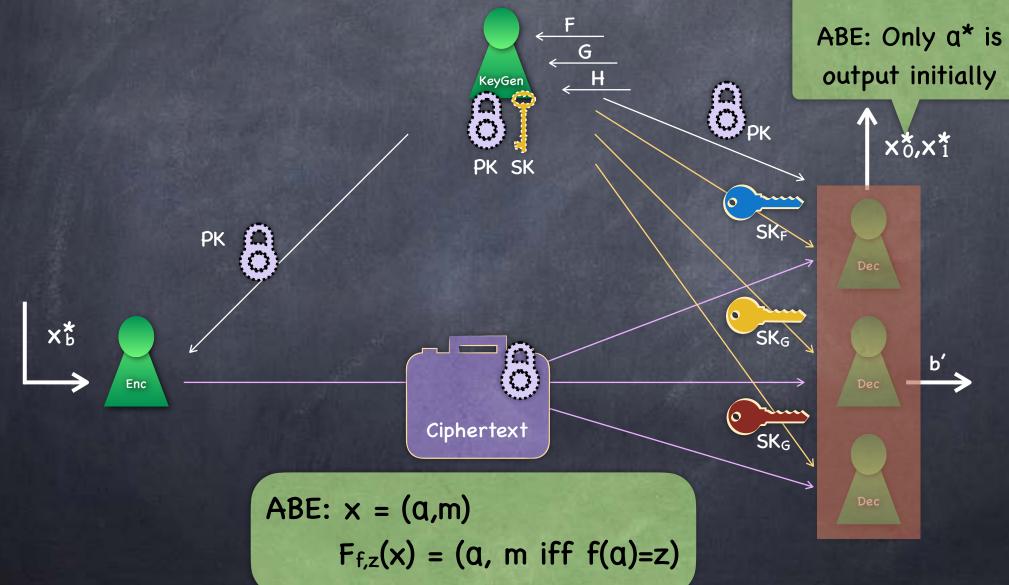
Functional Encryption

Lecture 23 ABE from LWE





Functional Encryption Selective Security Selective: (x^{*}, x^{*}) output before PK



Today: ABE From LWE

- Policy given as an arithmetic circuit f: Z_q⁺ → Z_q and a value z. Key SK_{f,z} decrypts ciphertext with attribute a iff f(a) = z.
 Very expressive policy ⇒ no conceptual distinction between CP-ABE and KP-ABE
 - Can implement CP-ABE also as KP-ABE: a encodes a policy (as bits representing a circuit) and f implements evaluating this policy on attributes hardwired into it

ABE From IBE?

Key-policy is (f,z) where f comes from a very large function family

- But instead suppose we had a small number of functions f (but z comes from an exponentially large range)
- Then enough to have a set of IBE instances one for each f
 - PK = { K_f } one for each f
 - \bigcirc SK_{f,z} = SK for ID z under scheme for f

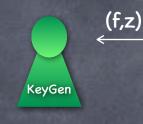
At a high level, will emulate this idea. But instead of listing Enc_{Kf}(m;f(a)) for each f, will include elements from which any of them can be <u>constructed</u> at the time of decryption

Key Homomorphism (BGGHNSVV'14)

Key-Homomorphism

Overview:

- Suppose each attribute a has t bits, and f given as a circuit Public key K_f constructed from PK = { K_i }_{i=1,...,t} Derived ciphertext $Enc_{K_f}(m; f(a))$ would be of the form
 - $(Q_{f,f(a)}(s), mask(s)+m)$ where s is randomly chosen
- Q_{f,f(a)}(s) can be constructed from { Q_{i,ai}(s) }_{i=1,...,t} (which is what is included in the actual ciphertext)
 SK_{f,z} can extract mask(s) from Q_{f,z}(s)



 $\mathsf{PK} = (\mathsf{K}_1, \dots, \mathsf{K}_t, \mathsf{K}_{\mathsf{mask}})$

(a,m)

Enc

SK_{f,z} can recover Mask(s;K_{mask}) from Q_{f,z}(s)

 $CT = [a, Q_{1,a_1}(s), ..., Q_{t,a_t}(s),$ $m + Mask(s; K_{mask})]$

> If f(a)=z, decode Q_{f,f(a)} using SK_{f,z} to get Mask(s;K_{mask})

Dec

 $Q_{f,f(a)}$ \uparrow $CTEval_{f}$ $Q_{1,a_{1}} \dots Q_{t,a_{t}}$

Kf

PKEval_f

K₁ ... K_t

PK: K_i = [A₀ | A_i] and K_{mask} = D, where A₀, A_i ← Z_q^{n×m}, D ← Z_q^{n×d}
m >> n log q so that A<u>r</u> is statistically close to uniform even when <u>r</u> has small entries (e.g., bits) a "small" basis for A_A
Fact: Can pick A along with a trapdoor T_A so that, given <u>u</u> ∈ Z_qⁿ, one can use T_A to sample <u>r</u> with small Z_q entries s.t. A<u>r</u> = <u>u</u>
⇒ sample R with small entries so that AR=D for D ∈ Z_q^{n×d}

Need [A | H] [R₁ | R₂]^T = D. Sample R₂. Then use T_A to sample R₁^T s.t. AR₁^T = D - HR₂^T

MSK: Trapdoor T_{A0}

Underlying IBE

- O PK: K = [A₀ | A] and K_{mask} = D, where A₀, A $\leftarrow \mathbb{Z}_q^{n \times m}$, D $\leftarrow \mathbb{Z}_q^{n \times d}$ and MSK: Trapdoor T_{A₀}
 Used for key-homomorphism. Not needed for IBE
- For an identity $z \in \mathbb{Z}_q$ let K → z denote [A₀ | A + zG], where G is
 the matrix to invert bit decomposition
- Inc(m;z) = (Q_z(s), mask(s) + [q/2] m) where Q_z(s) ≈ (K⊞z)^Ts and mask(s) ≈ D^Ts
 Using ≈ to denote adding a small noise (as in LWE)
- SK_z: R_z with small entries s.t. (K \boxplus z) R_z = D (computed using T_{A₀})
- Decryption: $R_z^T \cdot Q_z(\underline{s}) \approx mask(\underline{s})$. Recover m ∈ {0,1}^d.

O PK: K_i = [A₀ | A_i] and K_{mask} = D, where A₀, A_i ← $\mathbb{Z}_q^{n \times m}$, D ← $\mathbb{Z}_q^{n \times d}$ and MSK: Trapdoor T_{A₀}

Q_{i,aj}(s) ≈ (K_i⊞a_i)^Ts where s ← \mathbb{Z}_q^n .

 \uparrow Across all i, use same $\approx A_0^T s$ part.

O CT = ({Q_{i,ai}(s)}_i, mask(s) + [q/2]m), where m ∈ {0,1}^d, mask(s) ≈ D^Ts

- $K_f = [A_0 | A_f]$ where $A_f = PKEval(f, A_1, ..., A_t)$ (To be described)
- Q_{f,f(a)}(s) = CTEval(f,a,Q_{1,a1}(s)...,Q_{t,at}(s)) ≈ (K_f⊞ f(a))^Ts (To be described)
- SK_{f,z}: Compute K_f. Use T_{A₀} to get R_{f,z} s.t. (K_f ⊕ z) R_{f,z} = D
- Decryption: Compute Q_{f,f(a)}(<u>s</u>). If f(a)=z, then R_{f,z}^T·Q_{f,f(a)}(<u>s</u>) ≈ D^T<u>s</u>.
 Recover m ∈ {0,1}^d.

• $K_f = [A_0 | A_f]$ where $A_f = PKEval(f, A_1, ..., A_t)$ (To be described) • $Q_{f,f(\alpha)}(\underline{s}) = CTEval(f, \alpha, Q_{1,\alpha_1}(\underline{s})..., Q_{t,\alpha_t}(\underline{s})) \approx (K_f \boxplus f(\alpha))^T \underline{s}$ (To be described)

CTEval computed gate-by-gate

Enough to describe CTEval(f₁+f₂, (z₁,z₂), Q_{f₁,z₁}(s), Q_{f₂,z₂}(s)) and CTEval(f₁ · f₂, (z₁,z₂), Q_{f₁,z₁}(s), Q_{f₂,z₂}(s))

Getail Keep ≈ $A_0^T \underline{s}$ aside. To compute [$A_{g(f_1, f_2)} + g(z_1, z_2)G$]^T<u>s</u> for g=+,[·]

 \bigcirc err = $z_2 \cdot err_1 + B(A_{f_1})^T err_2$. Need z_2 to be small.

- Security?
- Sanity check: Is it secure when <u>no</u> function keys SK_{f,z} are given to the adversary?
- Security from LWE
 - All components in the ciphertext are LWE samples of the form (<u>a</u>,<u>s</u>)+noise, for the same <u>s</u> and random <u>a</u>.
 - If Hence all pseudorandom, including the mask $D^{T}s + noise$
- Do the secret keys SK_{f,z} make it easier to break security?
- Claim: No!

Scheme is <u>selective-secure</u> (under LWE)

Recall selective security for ABE:

- Adversary first outputs a*, before seeing PK
- Then obtains keys $SK_{f,z}$ s.t. $f(a^*) \neq z$
- Gives $x_0^* = (a^*,m_0)$ and $x_1^* = (a^*,m_1)$ and gets challenge Enc(x_b^*)

Plan: Simulated execution (indistinguishable from real) where PK* is designed such that, without MSK*, one can generate SK_{f,z} for all f and all z ≠ f(a*)

Breaking encryption for a* will still need breaking LWE!

- Plan: Simulated execution (indistinguishable from real) where PK* is designed such that, without MSK*, one can generate SK_{f,z} for all (f,z) s.t. z ≠ f(a*)
 - In D, A₀ as before but without trapdoor (i.e., given from outside)
 - Other keys A_i are (differently) trapdoored: A_i* = A₀S_i a*_iG where S_i have small entries

 \blacksquare A₀S_i close to uniform (like A_i) by extraction argument

- Consider a query (f,z) where $z \neq f(a^*) =: z^*$
 - Need to give $R_{f,z}$ s.t. ($K_{f} \boxplus z$) $R_{f,z} = D$
 - Do not have a trapdoor for $K_f = [A_0 | A_f z^*G]$
 - Will use a trapdoor for $A_f z^*G$ instead!

Two Trapdoors

Fact: Given A₀, H ∈ $\mathbb{Z}_q^{n \times m}$ of rank n, and D, can sample small R s.t.
 [A₀ | H] R = D if we have:
 [a "small" basis for $\Lambda_{A_0}^{\perp}$

The trapdoor T_{A_0} for sampling small R_0 s.t. $A_0R_0 = U$

Or (S,T_{H-A₀S}) s.t. H - A₀S has full rank and S "small"

E.g., small S s.t. H = $A_0S + z'G$ for $z' \neq 0$ and G has a known trapdoor T_G (which is also a trapdoor for z'G)

In the actual construction, we used the fact that (A₀, T_{A₀}) can be generated together, to be able to give out function keys R_{f,z}. (A_i picked randomly, resulting in random A_f.)

In the security proof, given an A_0 from outside, will construct $A_i^* = A_0S_i - a_i^*G$ and maintain $A_f^* = A_0S_f - f(a^*)G$. Then, if $z \neq f(a^*)$ and so $H = A_f^* + zG = A_0S_f + z'G$ for $z' = z - f(a^*) \neq 0$, can sample $R_{f,z}$.

Simulation of Keys

Simulated KeyGen (given a*) produces keys which are statistically close to the original keys

Public Key: Accepts A₀ from outside. Picks A_i* = A₀S_i - a*_iG where S_i have small entries.

Given f, A_f^* defined by PKEval (& S_f s.t. $A_f^* = A_0S_f - f(a^*)G$)

Ø Function Keys: Given (f,z) s.t. z ≠ f(a*), R_{f,z} s.t. (K_f*⊞z) R_{f,z} = D.

S_f remains small (assuming f₂(a*) is small in products f₁·f₂ in the circuit for computing f(a*))

So can sample small R_{f,z} as required (type 2 trapdoor)
 Simulated keys are statistically indistinguishable from the keys in the real experiment

Simulation of Ciphertext

• Accepts $\approx A_0^T s$ and $\approx D^T s$ from outside, and produces a ciphertext (corresponding to the given s, but without knowing s) Meed Q_{i,a^{*}i}(<u>s</u>) ≈ (K^{*}i⊞a^{*}i)^T<u>s</u> and mask(<u>s</u>) ≈ D^T<u>s</u> • For $Q_{i,a^*i}(s)$, need $\approx (A_i^* + a^*_iG)^T s = (A_0S_i)^T s = S_i^T A_0^T s$. Can derive this from $\approx A_0^T s$ and S_i ($S_i^T \cdot noise$ is fresh noise) If Simulated $Q_{i,a^*}(s)$ and mask(s) are statistically indistinguishable from the real experiment (conditioned on the keys) **a** But if $\approx A_0^T \underline{s}$ and $\approx D^T \underline{s}$ are replaced by random vectors, then: No information about the message (because random mask) Indistinguishable from the simulation above (by LWE) In turn statistically indistinguishable from the real Ø experiment