Obfuscation

Lecture 24

Obfuscation

@ The art & science of making programs “unintelligible”

#define _ -F<00||--F-00--;

int F=00,00=00;main(){F_00();printf("%1.3f\n",4.*-F/00/00);}F 00()

from International Obfuscated C Code Contest 1988 (via Wikipedia)

@ The program should be fully functional

@ It may contain secrets that shouldnt be revealed to the
users (e.g., signature keys) — any more than executing it

Obfuscation

@ For protecting proprietary algorithms, for crippling functionality
(until license bought), for hiding potential bugs, for hardwiring
cryptographic keys into apps, for reducing the need for
interaction with a trusted server (say for auditing purposes), ...

@ Several heuristic approaches to obfuscation exist

@ All break down against serious program analysis

Cryptographic Obfuscation

Obfuscation using cryptography?
@ Need to define a security notion

@ Constructions which meet the definition under
computational hardness assumptions

@ Cryptography using obfuscation

@ If realized, obfuscation can be used to instantiate various
other powerful cryptographic primitives

@ Example: PKE from SKE. Obfuscate the SKE encryption
program with the key hardwired (plus a PRF for generating
randomness from the plaintext), and release as public-key

@ Or FE: Encrypt message x with a CCA-secure PKE.
Function key SK¢ is a program that decrypts, computes
f(x) and outputs it.

Defining Obfuscation: First Try

Note: Considers only corrupt receiver

Too strong! Requires family to be
learnable from black-box access

Q- =i 4 O(f) -
A 0O « e
)
4—
f(Xz; \? \7
f € Family o* \Secureland | ¢ Coily O(f)
correct) if:
v A
= x s.t.
S
V@
output of @

is distributed
identically in
REAL and IDEAL

REAL
IDEAL

Defining Obfuscation: First Try

Note: Considers only corrupt receiver

‘ f Virtual w O(f)
‘—> 9 f(xn Black-Box = a2
(vB8B) \
F(><z) Obfuscation
f € Family Secure (and f € Family A b
correct) if: single
v A
= x s.t.
>
V@
output of @
is distributed
identically in REAL

IDEAL

REAL and IDEAL

Impossibility of Obfuscation

@ VBB obfuscation is impossible in general
@ Explicit example of an unobfuscatable function family

@ Idea: program which when fed its own code (even
obfuscated) as input, outputs secrets

@ Programs Pqg with secret strings a and g:
@ If input is of the form (0,a) output B
@ If input is of the form (1,P) for a program P, run P
with input (0,a) and if it outputs B, output (a,B)

@ When Pqg is run on its own (obfuscated) code, it outputs
(a,B). Can learn, e.q., first bit of a. In the ideal world, need
to quess!

9

Possibility of Obfuscation

Hardware assisted
For simple function families

@ e.g., Point functions (from perfectly one-way permutations)

@ But general "low complexity classes” are still unobfuscatable
(under cryptographic assumptions)

In idealized models like generic group model (coming up)

For weaker definitions like iO (coming up)

Q 0

Obfuscation from
Multi-Linear Map

Recall bilinear pairing: e: G1 x G2 — Gr such that e(g/,g;) = ge

Extension to more than 2 groups
@ Let T = {1,...k}. For each non-empty subset SCT, a group Gs.

% J e(gsf,gsg) = gsgb, Where Sl N SZ = 7 Cll'ld 53 - Sl U SZ

An element a encoded in Gs (S not hidden): [a]s (think g.)

@ Need a private key for encoding (think of keeping gs secret)
Following public operations:

@ [a]s + [b]s — [a+b]s (note that S is the same for all)

@ [als; * [bls, — [abls,us, where S; n S;= @ and S3=S; U S,

@ Zero-Test([alr) checks if a=0 or not (note: only for set T)
Generic Group Model heuristic: No other operation possible!
Obfuscation uses a “matrix program” representation of the
function

Matrix Programs

@ f:{0,1}» — {0,1} using a set of 2N wxw matrices (N = poly(n))
@ Barringtons Theorem: “Shallow” circuits (NC! functions) have
polynomial-sized matrix programs (with 5x5 permutation matrices)
X

(0) | (0)

M1 M2, M3o

M1y i M2y 0 M3y MN;
Mlp MZ2; M3g MN;

Product = I or A?

f(x)

Matrix Programs

@ Idea: Encode matrices s.t. only valid matrix multiplications and final
check (I or A?) can be carried out (for any x)

X
[T ERE] JRSE a]

M M2 M3, MW, |

J N N |
Mlp M2; M3g MN;

Product = I or A?

f(x)

Obfuscation from
Multi-Linear Map

@ Such encodings are known based on multi-linear maps

@ Using generic model multi-linear map, this yields Virtual
Black-Box obfuscation for polynomial-sized matrix programs

@ And hence for NC! circuits from Barringtons theorem

@ Can “bootstrap” to all polynomial-sized circuits/
polynomial-time computable functions, assuming FHE with
decryption in NC!

@ Instantiating obfuscation constructions using concrete
hardness assumptions on these candidates yields weaker
flavours of obfuscation

@ Several candidate multi-linear maps proposed [GGH'13, CLT'13,...]

@ Initial candidates broken...

Flavours of Obfuscation

VBB Obf.
Adaptive DIO
Differing Inputs Obf.
PC Differing Inputs Obf.
Indistinguishability Obf.

XIO

VGB Obf.

-

Not an

N

exhaustive

\

list!

J

IND-PRE Security

Different variants of the definition in this framework

Typically Co, C1 given to the adversary (part of aux)

m is IDEAL-Hiding if

= is REAL-Hiding if

v PPT R Prlb'=b] = V2 negl. v PPT & Prib'=b] = V2 + negl.

1=

¥

Co O(Cv) b’

aux

Co b’ b
—" e g |
Co. Cs

2\,

., e
Co. C,

aux o !

IND-PRE secure if v PPT @ in Test-Family

IDEAL

m IDEAL-hiding = m REAL-hiding REAL

Indistinguishability Obf. (iO)

Test picks functionally equivalent Co, C; (hardwired into it)

Guaranteed to be IDEAL-hiding

m is IDEAL-Hiding if
v PPT R Prlb'=b] = V2 negl.

I REAL—Hiding if
v PPT A Pr[b’=b] = ¥2 % negl.

Co O(Cv) b’

b Cb (b' b
—»—-—) O — 90— —»—- v —0—
Co, Cy Co, Cy
iO if v PPTm in iO Test-Family
= IDEAL-hiding = = REAL-hiding oA,

IDEAL

Differing Input Obf.

Co, C1 need not be functionally equivalent

To be not IDEAL-hiding, need a PPT& which can find a “differing input”

m is IDEAL-Hiding if = is REAL-Hiding if
v PPT x Pr(b’=b] = ¥2 + negl. v PPT A Pr[b’=b] = ¥2 % negl.

Co b’ b
B0 —9g—
Co, Cy

- A o, T

Adaptive p1o | PIO if ¥ PPTim in DIO Test-Family

allows 2-way m IDEAL-hiding = m REAL-hiding o
IDEA interaction

Cob O(Cv) b’
_, e
e 4

aux o !

1=

Public-Coin DIO

Test as in DIO, but aux includes all the randomness used by Test

m is IDEAL-Hiding if = is REAL-Hiding if
v PPT x Pr[b’=b] = ¥2 % negl. v PPT é Pr(b’=b] = ¥/2 % negl.
b Co | b | b Co O(Co) b’
“E- 0 —9— “EEES . g
Co, Cy Co, Cy

PC-DIO if v PPTm in PC-DIO Test-Family
= IDEAL-hiding = m REAL-hiding o

IDEAL

Virtual Grey Box Obf.

Arbitrary PPT Test, with arbitrary aux (CoXG:1 not necessarily included).
Allow computationally unbounded adversa

Original definition is simulation-
based a la VBB Obfuscation "

is IDEAL-Hiding if is REAL-Hiding if
\/ é Pr(b’=b] = ¥/2 % negl. v PPT & Prlb'=b] = v2 ¢ negl.
b C e [b | b C 0(C)
= -—> > —_— (. — -—> —_—
aux T aux

VGB Obf. if v PPT | |in VGB Test-Family
IDEAL-hiding statistically = REAL-hiding REAL

IDEAL

Inefficient iO

e

XIO0: Allows

~N

inefficient evaluation,

_

slightly better than
truth table

y

V

@ Write down the truth table of the function! But not efficient.

@ Better solution: Find a canonical circuit for the given circuit (e.g.,

smallest, lexicographically first)

@ Meets every requirement except that of the obfuscator being

efficient

@ Fact: Can find the canonical circuit in polynomial time if P=NP

@ i.e., P=NP = iO (with efficient obfuscator) exists

@ Cannot rule out the possibility that iO exists but there is no

OWF (say), unless we prove P£NP

IO from Compact FE

@ High-level idea:
@ Obfuscation is an FE encryption of the program, Enc(P)

@ Function keys to get Enc(Pl|x), and then to evaluate F/z(x) from it

(Challenge: How? (AS U(PlIx) = P(x), where U is a universal circui’r)
@ Incrementally: to compute Enc(all0) and Enc(alll) from Enc(a)

@ Just give a function key to compute fy(a) = Enc(allb) !

-

Enhance 3 An issue: fo(P) = fo(P’), but not equal. Still, issuing key for fo
FE to work

tor this = Should keep Enc(P) = Enc(P’)

.

@ Another issue: Enc should be a function supported by FE. (By
default, Enc is more complex than supported functions.)

/\

I h 4 D

Use a hierarchy of (single-key) FE Need to avoid exponential | Compact FE: Recen
schemes, with level i function blowup: Enc shouldn’t be constructions from
space co’n’raining level i-1 Enc much more complex than < strong but plausible

e ted functions. jons.
9 supported functions 7 assumptions)

Best-Possible Obfuscation

@ i0 as good at hiding information as any (perfectly correct)
obfuscation O

@ Anything that can be efficiently learned from (aux,iO(P))
can be efficiently learned from (aux,O(P))

@ (aux,iO(O(P))) = (aux,iO(P)), where O is any compiler that
perfectly preserves functionality

@ i.e., Any information that can be efficiently learned from
(aux,iO(P)) can be efficiently learned from (aux,iO(O(P)))

@ In turn, efficiently learned from (aux,O(P))

@ Note: Only holds when iO is efficient (so not applicable to
the canonical encoding construction)

Is iO Any Good?

@ iO does not promise to hide anything about the function
(only its representation)

@ Can we use IO in cryptographic constructions?

@ Yes (combined with other cryptographic primitives)

@ e.g. PKE from SKE using iO C With
different

@ In fact, can get FE (from PKE and NIZK) using i levels of
| security |

@ Recent results: iO “essentially” equivalent to FE for
general functions (note: FE doesnt hide function)

Implausibility of DIO?

@ Is DIO (im)possible?
@ Open

@ Constructions from multi-linear maps under strong (or idealized)
assumptions

@ Implausibility results

@ If highly secure (“sub-exponentially secure”) one-way
functions exist, then highly secure DIO for Turing machines
cannot exist!

@ Problem is the auxiliary information

@ Let aux be an obfuscated program which can extract secrets
from the obfuscated program. But in the ideal world, aux
would be useless (as it is obfuscated).

Today

@ Obfuscation
@ Strong definitions are provably impossible to achieve
@ Several weaker definitions

@ Recent breakthroughs for iO

