Homework 3

Cryptography & Network Security
CS 406 : Fall 2018

Released: Tue October 30
Due: Mon November 12

Signatures, Random Oracles [Total 75 pts]

1. Attacking a Signature Scheme [20 pts]

In this problem, we consider a seemingly minor modification of the Schnorr signature scheme, and
show that it can be broken.

Recall that, in the original scheme, the verification key is (G, g,Y), where G is a prime-order group
with a generator g and Y = g¢¥ is a random group element, with y <+ Zg| being the signing key; the
signature on a message M is produced as Sign, (M) = (e, s), where e = H(M]||g") and s = r — ye, for
arandom 7 < Zg.

In the modfied scheme the messages belong to G, and e = H(M||g") is replaced by e = H(M - g").

Give an existential forgery attack on this modified scheme (in the random oracle model).

2. CCA Secure PKE in the Random Oracle Model [45 pts]

Suppose (KeyGen, Enc, Dec) is a CPA-secure PKE scheme. We shall write Encpy (m;r) to indicate en-
cryption of the message m using randomness 7; suppose Enc requires » < {0,1}* (k, as always, being
the security parameter). Also, suppose H is a hash function modeled as a random oracle with k-bit
outputs.

Consider a new encryption scheme with the encryption algorithm defined as follows: Encpy (m;r) =
(Encpx (m||r; H(r)), H(m||r)), where r € {0, 1}*.

(a) What should the corresponding decryption algorithm Dec* be so that (KeyGen, Enc*, Dec*) is a
CCA-secure encryption scheme?

(b) Prove that with Dec* as you defined above, (KeyGen, Enc*, Dec”) is indeed a CCA-secure encryp-
tion scheme in the random oracle model. Flesh out the details of the proof as much as you can,
basing your arguments only on the CPA-security of the given scheme, and statistical properties.

Hint: You should convert a CCA-adversary A* for (KeyGen, Enc*, Dec*) into a CPA-adversary A for
(KeyGen, Enc, Dec). A will need to simulate the random oracle and the decryption oracle that A*
expects. As such, A gets to see all random oracle queries that A* makes.

(c) Show that the scheme will not even be CPA secure if H(m/||r) is replaced by H(m).

(d) Show that, for some choice of a CPA-secure scheme (KeyGen, Enc, Dec), the modified scheme will
not even be CPA secure if H(m/||r) is replaced by H (r). [Extra Credit]

3. Needham-Schroeder Protocol.

The Needham-Schroeder Public Key protocol was an early protocol (proposed in 1978) for “authenti-
cated key exchange,” using a public-key “encryption” scheme. (This was well before Goldwasser and
Micali had developed the CPA security notion for encryption.)

The protocol uses a trusted server, S, to help two parties exchange secret keys with each other. A priori,
there are no secrecy or authentication guarantees on the communication network, and the parties know
only each other’s identities and a public key of the server S. The server, S, knows public keys of all the
users. The goal of the protocol is that at the end A and B should agree on random nonces N4 and N
(chosen by A and B respectively).

The protocol is shown in Figure It is described in terms of a public key “encryption” algorithm
Enc. It is a deterministic encryption scheme with the property that Encpr (Encgz (M)) = M. If M is
sufficiently random, Encg}((M) is assumed to behave like a (very weak) signature on M: it is infeasible
for an adversary who is given a random M to create the signature on M (note that this is weaker than
the notion of existential unforgeability, which is not satisfied by this scheme). PA, PB are Alice and
Bob’s public keys and S A, SB are their secret keys, respectively. Likewise, the server’s public and secret
keys are PS, SS.

A— S A, B (This is A requesting S to send B’s public-key)
S—A: Encgé(PB, B) (A will use Encpg to recover B’s public key)
A— B : Encpp(Na, A) (where N4 is a fresh nonce, picked by A)
B—S: B, A (Now B requests S to send A’s public-key)
S— B : Encgé(PA7 A) (B will use Encpg to recover A’s public key)
B— A: Encpa(Np,Na) (where N is a fresh nonce picked by B)
A— B : Encpp(Ng) (A and B agree on N4, Np at this point)

Figure 1: The Needham-Schroeder public-key protocol.

(a) There is a (famous) man-in-the-middle attack on this protocol, whereby a party F in the system
can set up a shared key with B, such that B thinks that she has shared that key with A. Describe
such an attack (without looking it up!).

Hint: The adversary can run a concurrent session with A.

(b) Suggest a (small) fix for the attack.

(c) If you were designing this protocol today, using public-key encryption and signatures, how would
you do it?

