
Symmetric-Key Encryption:
constructions

Lecture 4

PRG, Stream Cipher

Story So Far

We defined (passive) security of Symmetric Key Encryption (SKE)

SIM-CPA = IND-CPA + almost perfect correctness

Restricts to PPT entities

Allows negligible advantage to the adversary

Today: Constructing one-time SKE from Pseudorandomness

Next time:

Pseudorandomness from One-Way Permutations

Multi-message SKE

Constructing SKE schemes

Basic idea: “stretchable” pseudo-random one-time pads (kept
compressed in the key)

(Will also need a mechanism to ensure that the same piece
of the one-time pad is not used more than once)

Approach used in practice today: complex functions which are
conjectured to have the requisite pseudo-randomness properties
(stream-ciphers, block-ciphers)

Theoretical Constructions: Security relies on certain
computational hardness assumptions related to simple functions

Expand a short random seed to a “random-looking” string

First, PRG with fixed stretch: Gk: {0,1}k → {0,1}n(k), n(k) > k

How does one define random-looking?

Next-Bit Unpredictability: PPT adversary can’t predict ith bit
of a sample from its first (i-1) bits (for every i ∈ {0,1,...,n-1})

A “more correct” definition:

PPT adversary can’t distinguish between a sample from
{Gk(x)}x←{0,1}k and one from {0,1}n(k)

Turns out they are equivalent!

Pseudorandomness
Generator (PRG)

| Pry←PRG[A(y)=0] - Pry←rand[A(y)=0] |
is negligible for all PPT A

Coming up

Computational
Indistinguishability

Two distribution ensembles {Xk} and {X’k} are said to be

computationally indistinguishable if

∀ (non-uniform) PPT distinguisher D, ∃ negligible ν(k) such
that | Prx←Xk[D(x)=1] - Prx←X’k[D(x)=1] | ≤ ν(k)

cf.: Two distribution ensembles {Xk} and {X’k} are said to be

statistically indistinguishable if ∀ functions T, ∃ negligible ν(k)
s.t. | Prx←Xk[T(x)=1] - Prx←X’k[T(x)=1] | ≤ ν(k)

Equivalently, ∃ negligible ν(k) s.t. Δ(Xk,X’k) ≤ ν(k) where

Δ(Xk,X’k) := max T | Prx←Xk[T(x)=1] - Prx←X’k[T(x)=1] |

Xk ≈X’k

Rec
all

Pseudorandomness
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

Gk: {0,1}k→{0,1}n(k) where n(k) > k

Security definition: Output distribution induced by random input
seed should be “pseudorandom”

i.e., Computationally indistinguishable from uniformly random

{Gk(x)}x←{0,1}k ≈ Un(k)

Note: {Gk(x)}x←{0,1}k cannot be statistically indistinguishable
from Un(k) unless n(k) ≤ k (Exercise)

i.e., no PRG against unbounded adversaries

Pseudorandom ⇒ NBU:

Reduction: Given a PPT adversary B (for NBU), will show how to
turn it into a PPT adversary A (for Pseudorandomness) with
similar advantage. Hence the advantage must be negligible.

Could be seen as showing the contrapositive: ¬NBU ⇒ ¬Pseudorandom

For any PPT B and i, consider PPT A which uses it to predict ith
bit and then checks if the prediction was correct

Formally, A(y) outputs B(y1
i-1) ⊕ yi (i as specified by B). Then:  

| Pry←PRG[A(y)=0] - Pry←rand[A(y)=0] | = | Pry←PRG[B(y1
i-1) = yi] - ½ |

Equivalent definitions
| Pry←PRG[A(y)=0] - Pry←rand[A(y)=0] |

is negligible for all PPT A
| Pry←PRG[B(y1

i-1) = yi] - ½ | is

negligible for all i, all PPT B

Next-Bit Unpredictable ⇔ Pseudorandom

NBU ⇒ Pseudorandom: Using a Hybrid Argument

Define distributions Hi over n-bit strings: y ← PRG. Output y1
i || r

where r is n-i independent uniform bits. H0 = rand, Hn = PRG.

NBU ⇒ Hi ≈ Hi+1 : Given a PPT distinguisher A, let PPT predictor

B be as follows: On input z ∈ {0,1}i-1, pick b← {0,1}, r ← {0,1}n-i and
output A(z || b || r) ⊕ b. Then [Exercise] :  

|Pry←PRG[B(y1
i-1) = yi] - ½| = |Pry←Hi[A(y)=0] - Pry←Hi+1[A(y)=0]|

Then [Exercise] : H0 ≈ Hn (for n(k) that is polynomial)

Equivalent definitions
| Pry←PRG[A(y)=0] - Pry←rand[A(y)=0] |

is negligible for all PPT A
| Pry←PRG[B(y1

i-1) = yi] - ½ | is

negligible for all i, all PPT B

Next-Bit Unpredictable ⇔ Pseudorandom

General PRG from  
1-Bit Stretch PRG

Increasing the stretch

Can use part of the PRG output as a new seed 
 

 

If intermediate seeds are never output, can keep  
stretching on demand (for any “polynomial length”)

A stream cipher

G
k k

1

Rk

G G G G...GRk

SCK

One-bit stretch PRG, Gk: {0,1}k → {0,1}k+1

will build
later

Why is
this a PRG?

A “hybrid
argument”

One-time CPA-secure SKE
with a Stream-Cipher

One-time Encryption with a stream-cipher:

Generate a one-time pad from a short seed

Can share just the seed as the key

Mask message with the pseudorandom pad

Decryption is symmetric: plaintext & ciphertext interchanged

SC can spit out bits on demand, so the message can arrive bit by
bit, and the length of the message doesn’t have to be a priori
fixed

Security: indistinguishability from using a truly random pad
(coming up)

SC ⊕K

m

Enc
(stream)

Stream Ciphers
Stream ciphers in practice

Naturally useful for onetime (stream) encryption, in
protocols where a key is established per session

Many popular candidates:

RC4: Obsolete (but popular). Designed in 1987. Leaked (and
broken) in 1994. Still used in BitTorrent, and supported as
an option in some protocols.

eSTREAM portfolio:

NIST recommendation: AES in an appropriate mode (later)

SCK

Profile 1  
(software)

HC-128, Rabbit, Salsa20/12, SOSEMANUK 128 bit keys

Profile 2  
(hardware)

Grain, MICKEY, Trivium 80 bit keys

One-time CPA-secure SKE
with a Stream-Cipher

In IDEAL experiment, consider simulator that  
uses a truly random string as the ciphertext

To show REAL ≈ IDEAL

Consider an intermediate world, HYBRID:

Like REAL, but Enc/Dec use a (long) truly random pad,  
instead of the output from the stream-cipher

HYBRID = IDEAL (recall perfect security of one-time pad)

Claim: REAL ≈ HYBRID

Consider the experiments as a system that accepts the pad
from outside (R’ = SC(K) for a random K, or truly random R)
and outputs the environment’s output. This system is PPT,
and so can’t distinguish pseudorandom from random.

SC ⊕K

m

Enc
(stream)

One-time CPA-secure SKE
with a Stream-Cipher

REAL

Env

PRG

≈

Env

Rand

HYBIRD

